Publications by authors named "Tiago B Quental"

Article Synopsis
  • The recognition of evolutionary relationships among species has transformed biological research approaches, particularly through the use of phylogenetic models for studies involving three or more lineages.
  • Most phylogenetic comparative methods operate under the assumption that lineages change independently after a divergence, but this paper highlights the often-overlooked phenomenon of "budding" speciation, where an ancestral lineage can persist alongside its offspring.
  • By examining the effects of budding speciation on evolutionary estimates and how it contrasts with the symmetrical split assumption, the authors aim to enhance understanding and communication between paleontological and neontological research while increasing awareness of underlying assumptions in phylogenetic studies.
View Article and Find Full Text PDF

The classic paper by Ehrlich and Raven on coevolution will soon be 60 years old. Although they were not the first to develop the idea of coevolution, their thought-provoking paper certainly popularized this idea and inspired several generations of scientists interested in coevolution. Here, we describe some of their main contributions, quantitatively measure the impact of their seminal paper on different fields of research, and discuss how ideas related to their original paper might push the study of coevolution forward.

View Article and Find Full Text PDF

Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the deep-time mechanisms behind ecological network assembly is crucial for grasping biodiversity changes over long periods.
  • We analyzed data from 468 bird species across 29 seed dispersal networks, finding that species crucial for plant-frugivore interactions tend to come from lineages with more stable macroevolutionary histories.
  • This relationship is more pronounced in warmer, wetter, and less seasonal environments, suggesting that species are sorted by relative diversification rates rather than absolute ones, influencing the structure and dynamics of ecological networks.
View Article and Find Full Text PDF

Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking.

View Article and Find Full Text PDF

The "law of constant extinction," proposed by Van Valen, states that long and short-lived taxa have equal chances of going extinct. This pattern of age-independent extinction was originally inferred using the fossil record of several different taxa and relied on survivorship curves built from the literal reading of the fossil record. Van Valen's seminal work was mostly done at higher taxonomic levels, hence its prevalence at the species level could not be directly inferred.

View Article and Find Full Text PDF

To understand the underlying mechanisms generating population genetic divergence and structure is a critical step towards understanding how biodiversity evolves at both micro- and macroevolutionary scales. At the population-level, geographic isolation as well as adaptation to local environmental conditions can generate different patterns of spatial genetic variation among populations. Specific organismal traits as well as the characteristics of the environment might influence the process under which populations become spatially structured.

View Article and Find Full Text PDF
Article Synopsis
  • * Two new methods, RPANDA and BAMM, aim to analyze extinction dynamics by allowing extinction rates to exceed speciation, but their effectiveness across different decline scenarios hasn't been thoroughly evaluated.
  • * In their study, the authors found that both methods perform similarly when declines are driven by decreasing speciation, but misattribute decline causes when only extinction rates increase, highlighting limitations that researchers should consider in their analyses.
View Article and Find Full Text PDF

The Cretaceous/Palaeogene (K-Pg) episode is an iconic mass extinction, in which the diversity of numerous clades abruptly declined. However, the responses of individual clades to mass extinctions may be more idiosyncratic than previously understood. Here, we examine the diversification dynamics of the three major mammalian clades in North America across the K-Pg.

View Article and Find Full Text PDF

An increase in ecological opportunities, either through changes in the environment or acquisition of new traits, is frequently associated with an increase in species and morphological diversification. However, it is possible that certain ecological settings might prevent lineages from diversifying. Arboreality evolved multiple times in vipers, making them ideal organisms for exploring how potentially new ecological opportunities affect their morphology and speciation regimes.

View Article and Find Full Text PDF

The estimation of diversification rates is one of the most vividly debated topics in modern systematics, with considerable controversy surrounding the power of phylogenetic and fossil-based approaches in estimating extinction. Van Valen's seminal work from 1973 proposed the "Law of constant extinction," which states that the probability of extinction of taxa is not dependent on their age. This assumption of age-independent extinction has prevailed for decades with its assessment based on survivorship curves, which, however, do not directly account for the incompleteness of the fossil record, and have rarely been applied at the species level.

View Article and Find Full Text PDF

A longstanding debate in evolutionary biology and paleontology is whether ecological interactions such as competition impose diversity dependence on speciation and extinction rates. Here, we analyze the fossil record of terrestrial mammalian carnivores in North America and Eurasia using a Bayesian framework to assess whether their diversity dynamics were affected by diversity dependence within and between families (12 in Eurasia, 10 in North America). We found eight instances of within-clade diversity dependence suppressing speciation rates and detected between-clade effects increasing extinction rates in six instances.

View Article and Find Full Text PDF
Article Synopsis
  • The family Viperidae includes around 329 venomous snake species, with most found in the Crotalinae subfamily, known as pit vipers, which have unique heat-sensing pits aiding their evolution and New World colonization.
  • This research presents a comprehensive molecular phylogeny for vipers, analyzing 79% of species and examining lineage divergence using fossil calibration.
  • Findings support the monophyly of Viperidae and its subfamilies, revealing new intergeneric relationships and suggesting significant radiation and speciation shifts in pit vipers in the late Paleocene to middle Eocene.
View Article and Find Full Text PDF

Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative.

View Article and Find Full Text PDF

There is no agreement among palaeobiologists or biologists as to whether, or to what extent, there are limits on diversification and species numbers. Here, we posit that part of the disagreement stems from: (i) the lack of explicit criteria for defining the relevant species pools, which may be defined phylogenetically, ecologically or geographically; (ii) assumptions that must be made when extrapolating from population-level logistic growth to macro-evolutionary diversification; and (iii) too much emphasis being placed on fixed carrying capacities, rather than taking into account the opportunities for increased species richness on evolutionary timescales, for example, owing to increased biologically available energy, increased habitat complexity and the ability of many clades to better extract resources from the environment, or to broaden their resource base. Thus, we argue that a more effective way of assessing the evidence for and against the ideas of bound versus unbound diversification is through appropriate definition of the relevant species pools, and through explicit modelling of diversity-dependent diversification with time-varying carrying capacities.

View Article and Find Full Text PDF

Attempts to infer the ecological drivers of macroevolution in deep time have long drawn inspiration from work on extant systems, but long-term evolutionary and geological changes complicate the simple extrapolation of such theory. Recent efforts to incorporate a more informed ecology into macroevolution have moved beyond the descriptive, seeking to isolate generating mechanisms and produce testable hypotheses of how groups of organisms usurp each other or coexist over vast timespans. This theme issue aims to exemplify this progress, providing a series of case studies of how novel modelling approaches are helping infer the regulators of biodiversity in deep time.

View Article and Find Full Text PDF

Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics.

View Article and Find Full Text PDF

The history of biodiversity is characterized by a continual replacement of branches in the tree of life. The rise and demise of these branches (clades) are ultimately determined by changes in speciation and extinction rates, often interpreted as a response to varying abiotic and biotic factors. However, understanding the relative importance of these factors remains a major challenge in evolutionary biology.

View Article and Find Full Text PDF

Most species disappear by the processes of background extinction, yet those processes are poorly understood. We analyzed the evolutionary dynamics of 19 Cenozoic terrestrial mammalian clades with rich fossil records that are now fully extinct or in diversity decline. We find their diversity loss was not just a consequence of "gamblers ruin" but resulted from the evolutionary loss to the Red Queen, a failure to keep pace with a deteriorating environment.

View Article and Find Full Text PDF

Molecular phylogenies have been used to study the diversification of many clades. However, current methods for inferring diversification dynamics from molecular phylogenies ignore the possibility that clades may be decreasing in diversity, despite the fact that the fossil record shows this to be the case for many groups. Here we investigate the molecular phylogenetic signature of decreasing diversity using the most widely used statistic for inferring diversity dynamics from molecular phylogenies, the γ statistic.

View Article and Find Full Text PDF

Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis.

View Article and Find Full Text PDF

Traditionally, patterns and processes of diversification could only be inferred from the fossil record. However, there are an increasing number of tools that enable diversification dynamics to be inferred from molecular phylogenies. The application of these tools to new data sets has renewed interest in the question of the prevalence of diversity-dependent diversification.

View Article and Find Full Text PDF

Over the last two decades, new tools in the analysis of molecular phylogenies have enabled study of the diversification dynamics of living clades in the absence of information about extinct lineages. However, computer simulations and the fossil record show that the inability to access extinct lineages severely limits the inferences that can be drawn from molecular phylogenies. It appears that molecular phylogenies can tell us only when there have been changes in diversification rates, but are blind to the true diversity trajectories and rates of origination and extinction that have led to the species that are alive today.

View Article and Find Full Text PDF

Stingless bees (Meliponini) constitute a diverse group of highly eusocial insects that occur throughout tropical regions around the world. The meliponine genus Melipona is restricted to the New World tropics and has over 50 described species. Melipona, like Apis, possesses the remarkable ability to use representational communication to indicate the location of foraging patches.

View Article and Find Full Text PDF