Biochim Biophys Acta Mol Basis Dis
June 2024
Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms.
View Article and Find Full Text PDFBackground: Myotonic dystrophy type 1 (DM1) is a dominant autosomal neuromuscular disorder caused by the inheritance of a CTG triplet repeat expansion in the Dystrophia Myotonica Protein Kinase (DMPK) gene. At present, no cure currently exists for DM1 disease.
Objective: This study investigates the effects of 12-week resistance exercise training on mitochondrial oxidative phosphorylation in skeletal muscle in a cohort of DM1 patients (n = 11, men) in comparison to control muscle with normal oxidative phosphorylation.
Background: GSK3β is an intracellular regulatory kinase that is dysregulated in multiple tissues in type 1 myotonic dystrophy, a rare neuromuscular disorder that manifests at any age. AMO-02 (tideglusib) inhibits GSK3β activity in preclinical models of type 1 myotonic dystrophy and promotes cellular maturation as well as normalizes aberrant molecular and behavioral phenotypes. This phase 2 study assessed the pharmacokinetics, safety and tolerability, and preliminary efficacy of AMO-02 in adolescents and adults with congenital and childhood-onset type 1 myotonic dystrophy.
View Article and Find Full Text PDFCurrently, the research and development of sunscreens play an important role on the synthesis of actives that are stable in various kinds of formulations-in addition to their efficiency and broad spectrum of protection against ultraviolet radiation. Our objective here was to synthesize new sunscreening chemical agents using quinoline as a base molecule. Twelve quinoline derivatives were synthesized, four of them novel molecules, and their photoprotective activity was determined in vitro using diffuse transmittance spectrophotometry.
View Article and Find Full Text PDF