Publications by authors named "Tia L Harrison"

Rates of molecular evolution vary greatly among even closely related species. Although theory predicts that antagonistic interactions between species increase rates of molecular evolution, predictions for how mutualism affects evolutionary rates are mixed. We compared rates of molecular evolution between (i) mutualistic and non-mutualistic legumes, (ii) an independent set of symbiotic rhizobia and their non-symbiotic close relatives, and (iii) symbiotic and non-symbiotic clades within Ensifer, a diverse genus of bacteria with various lifestyles.

View Article and Find Full Text PDF

Mutualism is thought to be more prevalent in the tropics than temperate zones and may therefore play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans.

View Article and Find Full Text PDF

Both mutualism and polyploidy are thought to influence invasion success in plants, but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant's niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success.

View Article and Find Full Text PDF

Advances in microbiome science require a better understanding of how beneficial microbes adapt to hosts. We tested whether hosts select for more-cooperative microbial strains with a year-long evolution experiment and a cross-inoculation experiment designed to explore how nitrogen-fixing bacteria (rhizobia) adapt to legumes. We paired the bacterium with one of five genotypes that vary in how strongly they "choose" bacterial symbionts.

View Article and Find Full Text PDF

How does mutualism affect range expansion? On the one hand, mutualists might thrive in new habitats thanks to the resources, stress tolerance or defence provided by their partners. On the other, specialized mutualists might fail to find compatible partners beyond their range margins, limiting further spread. A recent global analysis of legume ranges found that non-symbiotic legumes have been successfully introduced to more ranges than legumes that form symbioses with rhizobia, but there is still abundant unexplained variation in introduction success within symbiotic legumes.

View Article and Find Full Text PDF

Local adaptation is a common but not ubiquitous feature of species interactions, and understanding the circumstances under which it evolves illuminates the factors that influence adaptive population divergence. Antagonistic species interactions dominate the local adaptation literature relative to mutualistic ones, preventing an overall assessment of adaptation within interspecific interactions. Here, we tested whether the legume is adapted to the locally abundant species of mutualistic nitrogen-fixing rhizobial bacteria that vary in frequency across its eastern North American range.

View Article and Find Full Text PDF

Gene flow between genetically differentiated populations can maintain variation in species interactions, especially when population structure is congruent between interacting species. However, large-scale empirical comparisons of the population structure of interacting species are rare, particularly in positive interspecific interactions (mutualisms). One agriculturally and ecologically important mutualism is the partnership between legume plants and rhizobia.

View Article and Find Full Text PDF

The African clawed frog Xenopus laevis has a large native distribution over much of sub-Saharan Africa and is a model organism for research, a proposed disease vector, and an invasive species. Despite its prominent role in research and abundance in nature, surprisingly little is known about the phylogeography and evolutionary history of this group. Here, we report an analysis of molecular variation of this clade based on 17 loci (one mitochondrial, 16 nuclear) in up to 159 individuals sampled throughout its native distribution.

View Article and Find Full Text PDF