Ulcerative colitis (UC) is debilitating and carries a high colon cancer risk. Apoptosis of inflammatory cells is a key mechanism regulating UC. We have recently shown that American ginseng (AG), and to a greater extent, a Hexane fraction of AG (HAG) can cause apoptosis and suppress mouse colitis through a p53-mediated mechanism.
View Article and Find Full Text PDFUlcerative colitis is a chronic inflammatory condition associated with a high colon cancer risk. We have previously reported that American ginseng extract significantly reduced the inflammatory parameters of chemically induced colitis. The aim of this study was to further delineate the components of American ginseng that suppress colitis and prevent colon cancer.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2011
Inflammatory bowel diseases (IBDs), mainly Crohn's disease and ulcerative colitis, are dynamic, chronic inflammatory conditions that are associated with an increased colon cancer risk. Inflammatory cell apoptosis is a key mechanism for regulating IBD. Peptidylarginine deiminases (PADs) catalyze the posttranslational conversion of peptidylarginine to peptidylcitrulline in a calcium-dependent, irreversible reaction and mediate the effects of proinflammatory cytokines.
View Article and Find Full Text PDFWe have recently shown that American ginseng (AG) prevents and treats mouse colitis. Because both mice and humans with chronic colitis have a high colon cancer risk, we tested the hypothesis that AG can be used to prevent colitis-driven colon cancer. Using the azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of ulcerative colitis, we show that AG can suppress colon cancer associated with colitis.
View Article and Find Full Text PDFSphingolipid metabolism is driven by inflammatory cytokines. These cascade of events include the activation of sphingosine kinase (SK), and subsequent production of the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). Overall, S1P is one of the crucial components in inflammation, making SK an excellent target for the development of new anti-inflammatory drugs.
View Article and Find Full Text PDF