Publications by authors named "Tia C Hall"

Introduction: To investigate the utility of a new digital tool for measuring everyday functioning in preclinical Alzheimer's disease, we piloted the Assessment of Smartphone Everyday Tasks (ASSET) application.

Methods: Forty-six participants (50.3 ± 27.

View Article and Find Full Text PDF

Recent clinical and epidemiological studies support the contention that diabetes mellitus (DM) is a strong risk factor for the development of Alzheimer's disease (AD). The use of insulin cell toxin, streptozotocin (STZ), when injected into the lateral ventricles, develops an insulin resistant brain state (IRBS) and represents a non-transgenic, or sporadic AD model (SAD), with several AD-like neuropathological features. The present study explored the effects of an anti-diabetic drug, liraglutide (LIR), in reversing major pathological hallmarks in the prodromal disease stage of both the 5xFAD transgenic and SAD mouse models of AD.

View Article and Find Full Text PDF

Neurodegenerative diseases are an enormous public health problem, affecting tens of millions of people worldwide. Nearly all of these diseases are characterized by oligomerization and fibrillization of neuronal proteins, and there is great interest in therapeutic targeting of these aggregates. Here, we show that soluble aggregates of α-synuclein and tau bind to plate-immobilized PrP in vitro and on mouse cortical neurons, and that this binding requires at least one of the same N-terminal sites at which soluble Aβ aggregates bind.

View Article and Find Full Text PDF

Deposition of amyloid beta protein (Aβ) is a key component in the pathogenesis of Alzheimer's disease (AD). As an anti-amyloid natural polyphenol, curcumin (Cur) has been used as a therapy for AD. Its fluorescent activity, preferential binding to Aβ, as well as structural similarities with other traditional amyloid-binding dyes, make it a promising candidate for labeling and imaging of Aβ plaques in vivo.

View Article and Find Full Text PDF

In cerebral ischemia, studies of cell death have focused primarily on neurons, but recent work indicates that ischemia also causes damage to astrocytes. Activation of astrocytes is a typical brain response to stress stimuli and is evidenced by changes in cellular function and morphology, as well as upregulation of glial fibrillary acidic protein. The tumor-suppressor transcription factor p53 has recently been implicated as a mediator of ischemia-induced neuronal death, but very little is known about its role in the activation or the death of astrocytes.

View Article and Find Full Text PDF