Plate tectonics predicts that mountain ranges form by tectono-magmatic processes at plate boundaries, but high topography is often observed along passive margins far from any plate boundary. The high topography of the Scandes range at the Atlantic coast of Fennoscandia is traditionally assumed isostatically supported by variation in crustal density and thickness. Here we demonstrate, by our Silverroad seismic profile, that the constantly ~44 km thick crust instead is homogenous above the Moho, and Pn-velocity abruptly change from 7.
View Article and Find Full Text PDFThe thick crust of the southern Tibetan and central Andean plateaus includes high-conductivity, low-velocity zones ascribed to partial melt. The melt origin and effect on plateau uplift remain speculative, in particular if plateau uplift happens before continental collision. The East Anatolian Plateau (EAP) has experienced similar, more recent uplift but its structure is largely unknown.
View Article and Find Full Text PDFThe nature of the lower crust and the crust-mantle transition is fundamental to Earth sciences. Transformation of lower crustal rocks into eclogite facies is usually expected to result in lower crustal delamination. Here we provide compelling evidence for long-lasting presence of lower crustal eclogite below the seismic Moho.
View Article and Find Full Text PDFAll models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (V > 7.0 km/s) above the Moho.
View Article and Find Full Text PDFThe long-term stability of Precambrian continental lithosphere depends on the rheology of the lithospheric mantle as well as the coupling between crust and mantle lithosphere, which may be inferred by seismic anisotropy. Anisotropy has never been detected in cratonic crust. Anisotropy in southern Africa, detected by the seismological SKS-splitting method, usually is attributed to the mantle due to asthenospheric flow or frozen-in features of the lithosphere.
View Article and Find Full Text PDFSaucer-shaped intrusions of tens of meters to tens of kilometres across have been observed both from surface geological mapping and geophysical observations. However, there is only one location where they have been reported to extend c. 100 km laterally, and emplaced both in a sedimentary basin and the crystalline basement down to 12 km depth.
View Article and Find Full Text PDFContinental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior.
View Article and Find Full Text PDFStrong, scattered reflections beyond 8 degrees (8degrees) offset are characteristic features of all high-resolution seismic sections from the continents. The reflections identify a low-velocity zone below approximately 100 kilometers depth beneath generally stratified mantle. This zone may be caused by partial melting, globally initiated at equal depth in the continental mantle.
View Article and Find Full Text PDF