The context of the COVID-19 pandemic has brought to light the infodemic phenomenon and the problem of misinformation. Agencies involved in managing COVID-19 immunization programs are also looking for ways to combat this problem, demanding analytical tools specialized in identifying patterns of misinformation and understanding how they have evolved in time and space to demonstrate their effects on public trust. The aim of this article is to present the results of a study applying topic analysis in space and time with respect to public opinion on the Brazilian COVID-19 immunization program.
View Article and Find Full Text PDFThis article presents a study that applied opinion analysis about COVID-19 immunization in Brazil. An initial set of 143,615 tweets was collected containing 49,477 pro- and 44,643 anti-vaccination and 49,495 neutral posts. Supervised classifiers (multinomial naïve Bayes, logistic regression, linear support vector machines, random forests, adaptative boosting, and multilayer perceptron) were tested, and multinomial naïve Bayes, which had the best trade-off between overfitting and correctness, was selected to classify a second set containing 221,884 unclassified tweets.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2022
The Bedouin syndrome represents social interactions based on four premises: a friend of my friend is my friend, a friend of my enemy is my enemy, an enemy of my friend is my enemy, and an enemy of my enemy is my friend. These extensive associations exist in many social and economic relationships, such as market competition, neighborhood relations, political behavior, student gangs, organized crime, and the violent behavior of sports spectators (hooliganism) worldwide. This work tests the Bedouin syndrome hypothesis considering the violent behavior in the football fan culture.
View Article and Find Full Text PDFParametric and non-parametric frontier applications are typical for measuring the efficiency and productivity of many healthcare units. Due to the current COVID-19 pandemic, hospital efficiency is the center of academic discussions and the most desired target for many public authorities under limited resources. Investigating the state of the art of such applications and methodologies in the healthcare sector, besides uncovering strategical managerial prospects, can expand the scientific knowledge on the fundamental differences among efficiency models, variables and applications, drag research attention to the most attractive and recurrent concepts, and broaden a discussion on the specific theoretical and empirical gaps still to be addressed in future research agendas.
View Article and Find Full Text PDFHospital organizations have adopted telehealth systems to expand their services to a portion of the Brazilian population with limited access to healthcare, mainly due to the geographical distance between their communities and hospitals. The importance and usage of those services have recently increased due to the COVID-19 state-level mobility interventions. These services work with sensitive and confidential data that contain medical records, medication prescriptions, and results of diagnostic processes.
View Article and Find Full Text PDF