Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education.
View Article and Find Full Text PDFNatural killer (NK) cells play roles in viral clearance and early surveillance against malignant transformation, yet our knowledge of the underlying mechanisms controlling their development and functions remain incomplete. To reveal cell fate-determining pathways in NK cell progenitors (NKP), we utilized an unbiased approach and generated comprehensive gene expression profiles of NK cell progenitors. We found that the NK cell program was gradually established in the CLP to preNKP and preNKP to rNKP transitions.
View Article and Find Full Text PDFIL-15 priming of NK cells is a broadly accepted concept, but the dynamics and underlying molecular mechanisms remain poorly understood. We show that as little as 5 min of IL-15 treatment in vitro, followed by removal of excess cytokines, results in a long-lasting, but reversible, augmentation of NK cell responsiveness upon activating receptor cross-linking. In contrast to long-term stimulation, improved NK cell function after short-term IL-15 priming was not associated with enhanced metabolism but was based on the increased steady-state phosphorylation level of signalling molecules downstream of activating receptors.
View Article and Find Full Text PDFNatural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g.
View Article and Find Full Text PDFNK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC.
View Article and Find Full Text PDFDuring infection and inflammation, dendritic cells (DC) provide priming signals for natural killer (NK) cells via mechanisms distinct from their antigen processing and presentation functions. The influence of DC on resting NK cells, i.e.
View Article and Find Full Text PDFCystine knot α-amylase inhibitors belong to a knottin family of peptidyl inhibitors of 30-32 residues and contain two to four prolines. Thus far, only four members of the group of cystine knot α-amylase inhibitors have been characterized. Herein, the discovery and characterization of five cystine knot α-amylase inhibitors, allotides C1-C5 (Ac1-Ac5) (1-5), from the medicinal plant Allamanda cathartica are reported using both proteomic and genomic methods.
View Article and Find Full Text PDFObesity and type 2 diabetes are chronic metabolic diseases, and those affected could benefit from the use of α-amylase inhibitors to manage starch intake. The pseudocyclics, wrightides Wr-AI1 to Wr-AI3, isolated from an Apocynaceae plant show promise for further development as orally active α-amylase inhibitors. These linear peptides retain the stability known for cystine-knot peptides in the presence of harsh treatment.
View Article and Find Full Text PDF