The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury.
View Article and Find Full Text PDFExplosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries.
View Article and Find Full Text PDFThis study investigated impact-induced strain fields within brain tissue surrogates having different cortical gyrification. Two elastomeric surrogates, one representative of a lissencephalic brain and the other of a gyrencephalic brain, were drop impacted in unison at four different heights and in two different orientations. Each surrogate contained a radiopaque speckle pattern that was used to calculate strain fields.
View Article and Find Full Text PDFThreshold shock-impulse levels required to induce cellular injury and cumulative effects upon single and/or multiple exposures are not well characterized. Currently, there are few in vitro experimental models with blast pressure waves generated by using real explosives in the laboratory for investigating the effects of primary blast-induced traumatic brain injury. An in vitro indoor experimental platform is developed using real military explosive charges to accurately represent battlefield blast exposure and to probe the effects of primary explosive blast on dissociated neurons and tissue slices.
View Article and Find Full Text PDFThe effects of primary explosive blast on brain tissue still remain mostly unknown. There are few in vitro models that use real explosives to probe the mechanisms of injury at the cellular level. In this work, 3D aggregates of human brain cells or brain microphysiological system were exposed to military explosives at two different pressures (50 and 100 psi).
View Article and Find Full Text PDFExplosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures.
View Article and Find Full Text PDFRepetitive mild traumatic brain injury represents a considerable health concern, particularly for athletes and military personnel. For blast-induced brain injury, threshold shock-impulse levels required to induce such injuries and cumulative effects with single and/or multiple exposures are not well characterized. Currently, there is no established in vitro experimental model with blast pressure waves generated by live explosives.
View Article and Find Full Text PDFDiagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts.
View Article and Find Full Text PDFIn a military setting, traumatic brain injury (TBI) is frequently caused by blast waves that can trigger a series of neuronal biochemical changes. Although many animal models have been used to study the effects of primary blast waves, elucidating the mechanisms of damage in a whole-animal model is extremely complex. In vitro models of primary blast, which allow for the deconvolution of mechanisms, are relatively scarce.
View Article and Find Full Text PDFThe spectral emission of gas-phase aluminum and aluminum oxide was measured during and immediately after exposure of a bulk-aluminum sample to a laser-induced spark produced by a focused, pulsed laser beam (Nd:YAG, 10-ns pulse duration, 35 mJ/pulse, lambda = 1064 nm). The spectral emission was measured as a function of time after the onset of the laser pulse, and it was also measured in different bath gases (air, nitrogen, oxygen, and helium).
View Article and Find Full Text PDF