Publications by authors named "Thushara D Abhayapala"

This paper proposes a time-domain nearfield beamformer with spherical harmonic decomposition. The beamformer design is separated into two stages: sound field measurement and beamformer coefficient design. This makes it easier for the beamformer to be implemented by different array structures.

View Article and Find Full Text PDF

The knowledge of frequency-dependent spatiotemporal features of the reflected soundfield is essential in optimizing the perception quality of spatial audio applications. For this purpose, we need a reliable room acoustic analyzer that can conceive the spatial variations in a decaying reflected soundfield according to the frequency-dependent surface properties and source directivity. This paper introduces a time-frequency-dependent angular reflection power distribution model represented by a von Mises-Fisher (vMF) mixture function to facilitate manifold analysis of a reverberant soundfield.

View Article and Find Full Text PDF

Spatial active noise control (ANC) systems focus on minimizing unwanted acoustic noise over continuous spatial regions by generating anti-noise fields with secondary loudspeakers. Conventionally, error microphones are necessary inside the region to measure the channels from the secondary loudspeakers to the error microphones and record the residual sound field during the noise control. These error microphones highly limit the implementation of spatial ANC systems because of their impractical geometry and obstruction to the users from accessing the region.

View Article and Find Full Text PDF

Active noise control (ANC) over an extended spatial region using multiple microphones and multiple loudspeakers has become an important problem. The maximum noise reduction (NR) potential over the control area is a critical evaluation variable as it indicates the fundamental limitation of a given ANC system. In this paper, a method to mathematically formulate the NR potential for any given multichannel ANC systems is developed.

View Article and Find Full Text PDF

Mode-matching based multizone reproduction has been mainly focused on a purely two-dimensional (2D) theory, where infinite-long 2D secondary sources are assumed for 2D multizone reproduction. Its extension to the three-dimensional (3D) case requires more secondary sources and a higher computational complexity. This work investigates a more practical setup to use 3D sound sources as secondary sources for multizone reproduction in a 2D horizontal plane, i.

View Article and Find Full Text PDF

Binaural room responses are normally measured on a listening subject in a room. The measurements, however, rapidly change with the source and receiver position. In addition, the measurements taken in a room can only be used to simulate scenes of that environment.

View Article and Find Full Text PDF

The sound field separation methods can separate the target field from the interfering noises, facilitating the study of the acoustic characteristics of the target source, which is placed in a noisy environment. However, most of the existing sound field separation methods are derived in the frequency-domain, thus they are best suited for separating stationary sound fields. In this paper, a time-domain sound field separation method is developed that can separate the non-stationary sound field generated by the target source over a sphere in real-time.

View Article and Find Full Text PDF

Sound intensity is a fundamental quantity describing acoustic wave fields and it contains both energy and directivity information. It is used in a variety of applications such as source localization, reproduction, and power measurement. Until now, intensity is defined at a point in space, however given sound propagates over space, knowing its spatial distribution could be more powerful.

View Article and Find Full Text PDF

Current active noise control systems can cancel noises in a duct effectively. However, they are insufficient for suppressing complex noise fields in time-varying rooms. This paper develops an active noise control system that can cancel tonal noise fields produced by a primary source in a room.

View Article and Find Full Text PDF

Allen and Berkley's image source method (ISM) is proven to be a very useful and popular technique for simulating the acoustic room transfer function (RTF) in reverberant rooms. It is based on the assumption that the source and receiver of interest are both omnidirectional. With the inherent directional nature of practical loudspeakers and the increasing use of directional microphones, the above assumption is often invalid.

View Article and Find Full Text PDF

Acoustic reciprocity is a fundamental property of acoustic wavefields that is commonly used to simplify the measurement process of many practical applications. Traditionally, the reciprocity theorem is defined between a monopole point source and a point receiver. Intuitively, it must apply to more complex transducers than monopoles.

View Article and Find Full Text PDF

Multi-channel active noise control (ANC) is currently an attractive solution for the attenuation of low-frequency noise fields, in three-dimensional space. This paper develops a controller for the case when the noise source components are sparsely distributed in space. The anti-noise signals are designed as in conventional ANC to minimize the residual errors but with an additional term containing an ℓ norm regularization applied to the signal magnitude.

View Article and Find Full Text PDF

Multi-zone sound control aims to reproduce multiple sound fields independently and simultaneously over different spatial regions within the same space. This paper investigates the multi-zone sound control problem formulated in the modal domain using the Lagrange cost function and provides a modal-domain analysis of the problem. The Lagrange cost function is formulated to represent a quadratic objective of reproducing a desired sound field within the bright zone and with constraints on sound energy in the dark zone and global region.

View Article and Find Full Text PDF

Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose.

View Article and Find Full Text PDF

This letter proposes an efficient parameterization of the three-dimensional room transfer function (RTF) which is robust for the position variations of source and receiver in respective horizontal planes. Based on azimuth harmonic analysis, the proposed method exploits the underlying properties of the associated Legendre functions to remove a portion of the spherical harmonic coefficients of RTF which have no contribution in the horizontal plane. This reduction leads to a flexible measuring-point structure consisting of practical concentric circular arrays to extract horizontal plane RTF coefficients.

View Article and Find Full Text PDF

Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources.

View Article and Find Full Text PDF

The spectral localization cues contained in the head-related transfer function are known to play a contributory role in the sound source localization abilities of humans. However, existing localization techniques are unable to fully exploit this diversity to accurately localize a sound source. The availability of just two measured signals complicates matters further, and results in front to back confusions and poor performance distinguishing between the source locations in a vertical plane.

View Article and Find Full Text PDF

Photoacoustic imaging is a biomedical imaging modality capable of early cancer detection. In this paper, we proposed a novel iterative Projections Onto Convex Sets (POCS) method for improving photoacoustic reconstruction. This method aims to obtain a non negative pressure distribution satisfying the measured signals.

View Article and Find Full Text PDF

Photoacoustic image reconstruction algorithms are usually slow due to the large sizes of data that are processed. This paper proposes a method for exact photoacoustic reconstruction for the spherical geometry in the limiting case of a continuous aperture and infinite measurement bandwidth that is faster than existing methods namely (1) backprojection method and (2) the Norton-Linzer method [S. J.

View Article and Find Full Text PDF

This paper develops theory to design higher order directional microphone arrays. The proposed higher order designs have similar inter sensor spacings as traditional first and second order differential arrays. The Jacobi-Anger expansion is used to exploit the underlying structure of microphone signals from pairs of closely spaced sensors.

View Article and Find Full Text PDF

This paper studies head-related transfer function (HRTF) sampling and synthesis in a three-dimensional auditory scene based on a general modal decomposition of the HRTF in all frequency-range-angle domains. The main finding is that the HRTF decomposition with the derived spatial basis function modes can be well approximated by a finite number, which is defined as the spatial dimensionality of the HRTF. The dimensionality determines the minimum number of parameters to represent the HRTF corresponding to all directions and also the required spatial resolution in HRTF measurement.

View Article and Find Full Text PDF

We propose a novel algorithm for extracting atrial activity from single lead electrocardiogram (ECG) signal sustained with atrial fibrillation (AF), based on a short-time expansion of an orthogonal basis function set. The method preserves the time variation of spectral content of the underlying AF signal, thus time-frequency analysis of the AF signal can be successfully performed. The new method is compared to the standard average beat subtraction (ABS) method using synthetic AF sustained ECG data.

View Article and Find Full Text PDF

With the recent emergence of surround sound technology, renewed interest has been shown in the problem of sound field reproduction. However, in practical acoustical environments, the performance of sound reproduction techniques are significantly degraded by reverberation. In this paper, we develop a method of sound field reproduction for reverberant environments.

View Article and Find Full Text PDF