Publications by authors named "Thurmond D"

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Introduction: Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in β-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional β-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on β-cell dys(function).

View Article and Find Full Text PDF
Article Synopsis
  • * Research using genetically modified mice and human beta cells showed that increasing PAK1 in beta cells decreased cell death and boosted insulin production, especially under high-fat diet conditions.
  • * The results suggest that PAK1 enhances insulin gene expression and provides a protective effect against cell death, indicating its potential as a therapeutic target for improving beta cell function in diabetes.
View Article and Find Full Text PDF

Unlabelled: Current treatments for type 1 diabetes (T1D) focus on insulin replacement. We demonstrate the therapeutic potential of a secreted protein fraction from embryonic brown adipose tissue (BAT), independent of insulin. The large molecular weight secreted fraction mediates insulin receptor-dependent recovery of euglycemia in a T1D animal model, nonobese diabetic (NOD) mice, by suppressing glucagon secretion.

View Article and Find Full Text PDF

Exocrine-to-endocrine cross talk in the pancreas is crucial to maintain β-cell function. However, the molecular mechanisms underlying this cross talk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of β-cells in vitro, but its physiological role in vivo in the pancreas is unknown.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.

View Article and Find Full Text PDF

Diet-related lipotoxic stress is a significant driver of skeletal muscle insulin resistance (IR) and type 2 diabetes (T2D) onset. β-adrenergic receptor (β-AR) agonism promotes insulin sensitivity in vivo under lipotoxic stress conditions. Here, we established an in vitro paradigm of lipotoxic stress using palmitate (Palm) in rat skeletal muscle cells to determine if β-AR agonism could cooperate with double C-2-like domain beta (DOC2B) enrichment to promote skeletal muscle insulin sensitivity under Palm-stress conditions.

View Article and Find Full Text PDF

The p21-activated kinase 1 (PAK1) is required for insulin-stimulated glucose uptake in skeletal muscle cells. However, whether PAK1 regulates skeletal muscle mitochondrial function, which is a central determinant of insulin sensitivity, is unknown. Here, the effect of modulating PAK1 levels (knockdown via siRNA, overexpression via adenoviral transduction, and/or inhibition of activation via IPA3) on mitochondrial function was assessed in normal and/or insulin-resistant L6.

View Article and Find Full Text PDF

Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have discovered potential progenitor cells in the adult human pancreas that can self-renew and differentiate into various cell types, which could be beneficial for regenerative medicine.
  • By using a special assay technique, scientists identified a subpopulation of ductal cells that can grow significantly and produce insulin-expressing cells when treated with specific inhibitors.
  • These findings suggest that progenitor-like cells either naturally exist in the adult pancreas or can easily adapt and thrive in a lab setting, opening avenues for treatment in diabetes and other conditions.
View Article and Find Full Text PDF
Article Synopsis
  • * GLUT4 is normally stored inside the cell and moves to the cell surface in response to insulin, with this process involving specific proteins (SNAREs) that facilitate the docking and fusion of GLUT4 vesicles.
  • * Research shows that defects in GLUT4 translocation and related proteins (SNAREs) contribute to insulin resistance and type 2 diabetes, highlighting potential new therapeutic strategies targeting these proteins to improve glucose uptake.
View Article and Find Full Text PDF

The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass.

View Article and Find Full Text PDF
Article Synopsis
  • DOC2b is a protein that helps the pancreas release insulin when glucose (sugar) levels go up, which is important for managing blood sugar.
  • Scientists found out that when glucose levels rise, a part of the DOC2b protein gets a special tag (called phosphorylation) that involves another protein called YES.
  • This tagging helps DOC2b work better, allowing more insulin granules to get to the surface of the cells, which improves insulin release and could help develop new treatments for diabetes.
View Article and Find Full Text PDF

Skeletal muscle accounts for ~80% of insulin-stimulated glucose uptake. The Group I p21-activated kinase 1 (PAK1) is required for the non-canonical insulin-stimulated GLUT4 vesicle translocation in skeletal muscle cells. We found that the abundances of PAK1 protein and its downstream effector in muscle, ARPC1B, are significantly reduced in the skeletal muscle of humans with type 2 diabetes, compared to the non-diabetic controls, making skeletal muscle PAK1 a candidate regulator of glucose homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction contributes to insulin resistance in skeletal muscle, and STX4 levels are lower in diabetic muscle.
  • Transgenic mice with increased STX4 specifically in skeletal muscle showed improved insulin sensitivity and mitochondrial function without weight change, even after a high-fat diet.
  • STX4 is found near the mitochondrial membrane and helps prevent mitochondrial damage by interacting with Drp1, suggesting it plays a significant role beyond the plasma membrane and could be a potential treatment for insulin resistance.
View Article and Find Full Text PDF

Syntaxin 4 (STX4), a plasma membrane-localized SNARE protein, regulates human islet β-cell insulin secretion and preservation of β-cell mass. We found that human type 1 diabetes (T1D) and NOD mouse islets show reduced β-cell STX4 expression, consistent with decreased STX4 expression, as a potential driver of T1D phenotypes. To test this hypothesis, we generated inducible β-cell-specific STX4-expressing NOD mice (NOD-iβSTX4).

View Article and Find Full Text PDF

Several small guanosine triphosphatases (GTPases) from the Ras protein superfamily regulate glucose-stimulated insulin secretion in the pancreatic islet β-cell. The Rho family GTPases Cdc42 and Rac1 are primarily involved in relaying key signals in several cellular functions, including vesicle trafficking, plasma membrane homeostasis, and cytoskeletal dynamics. They orchestrate specific changes at each spatiotemporal region within the β-cell by coordinating with signal transducers, guanine nucleotide exchange factors (GEFs), GTPase-activating factors (GAPs), and their effectors.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation.

View Article and Find Full Text PDF

Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination.

View Article and Find Full Text PDF

Objective: p21 (Cdc42/Rac1) activated Kinase 1 (PAK1) is a candidate susceptibility factor for type 2 diabetes (T2D). PAK1 is depleted in the islets from T2D donors, compared to control individuals. In addition, whole-body PAK1 knock out (PAK1-KO) in mice worsens the T2D-like effects of high-fat diet.

View Article and Find Full Text PDF

The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease.

View Article and Find Full Text PDF

As one of the leading causes of morbidity and mortality worldwide, diabetes affects an estimated 422 million adults, and it is expected to continue expanding such that by 2050, 30% of the U.S. population will become diabetic within their lifetime.

View Article and Find Full Text PDF

Aims/hypothesis: Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear.

View Article and Find Full Text PDF