Publications by authors named "Thunyalux Ratpukdi"

Biological activated carbon filter (BAC) is one of the most effective technologies for removing disinfection by-product (DBP) precursors from water. Biochar is a lower-cost medium that has the potential to replace granular activated carbon in BAC applications, thus leading to the development of biological biochar filter (BCF). This study compared BCF with BAC for the removal of DBP precursors using column experiments.

View Article and Find Full Text PDF

Triclocarban (TCC), an antibacterial agent commonly used in personal care products, is one of the top ten contaminants of emerging concern in various environmental media, including soil and contaminated water in vadose zone. This study aimed to investigate TCC-contaminated water remediation using biochar-immobilized bacterial cells. Pseudomonas fluorescens strain MC46 (MC46), an efficient TCC-degrading isolate, was chosen, whereas agro-industrial carbonized waste as biochar was directly used as a sustainable cell immobilization carrier.

View Article and Find Full Text PDF

Triclocarban (TCC) has been used in consumer products and is a widespread contaminant in municipal wastewater treatment systems that ultimately accumulates in natural receiving water and soil. This work aims to apply an innovative hybrid moving entrapped bead activated sludge reactor (named "HyMER") that integrates entrapped TCC-degrading microbes and freely suspended activated sludge to treat TCC-contaminated wastewater. A previously isolated TCC-degrading bacterium (Pseudomonas fluorescens strain MC46, called MC46) and barium alginate entrapment were applied.

View Article and Find Full Text PDF

Biochar is a low-cost adsorbent with considerable potential for utilization as a water filtration medium; however, organic matter leaching from biochar can lead to the formation of disinfection by-products (DBPs). This study investigated the leaching of dissolved organic carbon (DOC) from eucalyptus-derived biochar and the formation of DBPs generated by chlorination and chloramination. Column experiments with empty bed contact times (EBCTs) of 10 and 30 min were conducted for 200 bed volumes (BVs).

View Article and Find Full Text PDF

The presence of natural organic matter (NOM) in groundwater could play an important role in the removal of contaminants by nanoscale zero-valent iron (NZVI). NOM has a heterogeneous structure and can be divided into 6 fractions based on polarity and charges: hydrophobic acid (HPOA), hydrophobic base (HPOB), hydrophobic neutral (HPON), hydrophilic acid (HPIA), hydrophilic base (HPIB), and hydrophilic neutral (HPIN). The objective of this study was to evaluate the interactions between NOM fractions and NZVI using two approaches: 1) the interaction between NOM fraction isolates and NZVI and 2) bulk NOM fractionation before and after reaction with NZVI.

View Article and Find Full Text PDF

The occurrence of manganese in groundwater causes coloured water and pipe rusting in water treatment systems. Consumption of manganese-contaminated water promotes neurotoxicity in humans and animals. Manganese-oxidizing bacteria were isolated from contaminated areas in Thailand for removing manganese from water.

View Article and Find Full Text PDF

The main objective of this work was to investigate the feasibility of using vacuum ultraviolet (VUV, 185 + 254 nm) and ultraviolet (UV, 254 nm) for the reduction of dissolved organic nitrogen (DON) and haloacetonitrile formation potential (HANFP) of surface water and treated effluent wastewater samples. The results showed that the reduction of dissolved organic carbon (DOC), DON, hydrophobicity (HPO), absorbance at 254 nm (UV), and fluorescence excitation-emission matrix (FEEM) of both water samples by VUV was higher compared to using UV. The addition of HO remarkably improved the performances of VUV and UV.

View Article and Find Full Text PDF

Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process.

View Article and Find Full Text PDF

Occurrence of silver nanoparticles (AgNPs) in wastewater treatment systems could impact the ammonia oxidation (AO). This study investigated the reduction of AgNPs and dissociated silver ion (Ag) toxicity on nitrifying sludge using cell entrapment technique. Three entrapment materials, including barium alginate (BA), polyvinyl alcohol (PVA), and a mixture of polyvinyl alcohol and barium alginate (PVA-BA), were applied.

View Article and Find Full Text PDF

Glutaraldehyde (GA) is the most common biocide used in unconventional oil and gas production. Photocatalytic degradation of GA in brine simulating oil and gas produced water using Ag/AgCl/BiOCl composite as a photocatalyst with visible light was investigated. Removal of GA at 0.

View Article and Find Full Text PDF

This study investigated removal of triclocarban (TCC) from contaminated wastewater by Pseudomonas fluorescens strain MC46 entrapped in barium alginate. Appropriate entrapped cell preparation conditions (cell-to-entrapment material ratio and cell loading) for removing TCC were examined. The highest TCC removal by the entrapped and free cell systems at the initial TCC concentration of 10 mg/L was 72 and 45%, respectively.

View Article and Find Full Text PDF

Glutaraldehyde (GA) has been used extensively as a biocide in hydraulic fracturing fluid leading to its presence in oil and gas produced water. In this study, photolysis was used to degrade GA from brine solutions simulating produced water. Photolysis of GA was performed under ultraviolet (UV) irradiation.

View Article and Find Full Text PDF

Photodegradation of haloacetonitriles (HANs), highly carcinogenic nitrogenous disinfection by-products, in water using vacuum ultraviolet (VUV, 185 + 254 nm) in comparison with ultraviolet (UV, only 254 nm) was investigated. Monochloroacetonitrile (MCAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), and dibromoacetonitrile (DBAN) were species of HANs studied. The effect of gas purging and intermediate formation under VUV were examined.

View Article and Find Full Text PDF

The increase in mineralization and biodegradability of natural organic matter (NOM) by ozone-vacuum ultraviolet (VUV) in comparison with ozone, VUV, ozone-ultraviolet (UV), and UV were investigated. The effects of operating parameters including pH and ozone dose were evaluated. Results showed that the mineralization rate of dissolved organic carbon (DOC) provided by the processes tested was in the following order: ozone-VUV > VUV > ozone-UV > ozone > UV.

View Article and Find Full Text PDF

This paper introduces a novel natural organic matter (NOM) fractionation technique using solid-phase extraction cartridges. The new technique requires only 6 hours of fractionation time, which is much faster than traditional fractionation techniques (24 hours). It uses three Bond Elute ENV cartridges (Varian, Inc.

View Article and Find Full Text PDF

The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse.

View Article and Find Full Text PDF