Publications by authors named "Thulitha M Abeywickrama"

Because of its considerable theoretical specific capacity and energy density, lithium-sulfur battery technology holds great potential to replace lithium-ion battery technology. However, a versatile, low-cost, and easily scalable bulk synthesis method is essential for translating bench-level development to large-scale production. This paper reports the design and synthesis of a new scalable sulfur cathode, S@CNT/PANI/PPyNT/TiO (BTX).

View Article and Find Full Text PDF

Upconversion luminescence (UCL) is a fluorescence process where two or more lower-energy photons convert into a higher-energy photon. Lanthanide (Ln)-doped UCL materials often suffer from weak luminescence, especially when directly synthesized by a hydrothermal (HT) process due to the existing hydroxyl group and undesirable arrangement of dopants within host lattices which quench luminescence and limit energy transfer. Therefore, additional heat treatment processes are required to enhance their UCL emission, even though direct hydrothermal synthesis without further heat treatment has the advantages of low energy consumption, fast synthesis, and wide applicability to generate UCL materials.

View Article and Find Full Text PDF

Lead selenide quantum dots (QDs) are low-bandgap IV-VI semiconducting nanomaterials that have been studied for a variety of applications. Their preparation using colloidal methods can create small spherical to larger cubic nanocrystals, with an upper limit of ~17 nm reported to date. Here we describe methods for preparing cubic PbSe nanocrystals over a 20-40 nm size range using a twostep procedure.

View Article and Find Full Text PDF