Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales.
View Article and Find Full Text PDFAlzheimer's disease is a severe brain condition caused by the formation of amyloid plaques composed of amyloid beta (Aβ) peptides. These peptides form oligomers, protofibrils, and fibrils before deposition into amyloid plaques. Among these intermediates, Aβ oligomers (AβOs) were found to be the most toxic and therefore an appealing target for drug development and understanding their role in the disease.
View Article and Find Full Text PDFThe development of solid biomaterials has rapidly progressed in recent years in applications in bionanotechnology. The immobilization of proteins, such as enzymes, within protein crystals is being used to develop solid catalysts and functionalized materials. However, an efficient method for encapsulating protein assemblies has not yet been established.
View Article and Find Full Text PDFProtein assemblies can be designed for development of nano-bio materials. This has been achieved by modulating protein-protein interactions. However, fabrication of highly ordered protein assemblies remains challenging.
View Article and Find Full Text PDF