Brief Funct Genomics
January 2025
Complex multi-omics effects drive the clustering of cardiometabolic risk factors, underscoring the imperative to comprehend how individual and combined omics shape phenotypic variation. Our study partitions phenotypic variance in metabolic syndrome (MetS), blood glucose (GLU), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and blood pressure through genome, transcriptome, metabolome, and exposome (i.e.
View Article and Find Full Text PDFSummary: MicroRNA (miRNA) sponges influence the capability of miRNA-mediated gene silencing by competing for shared miRNA response elements and play significant roles in many physiological and pathological processes. It has been proved that computational or dry-lab approaches are useful to guide wet-lab experiments for uncovering miRNA sponge regulation. However, all of the existing tools only allow the analysis of miRNA sponge regulation regarding a group of samples, rather than the miRNA sponge regulation unique to individual samples.
View Article and Find Full Text PDFBrief Funct Genomics
July 2022
Preeclampsia is a pregnancy-specific disease that can have serious effects on the health of both mothers and their offspring. Predicting which women will develop preeclampsia in early pregnancy with high accuracy will allow for improved management. The clinical symptoms of preeclampsia are well recognized, however, the precise molecular mechanisms leading to the disorder are poorly understood.
View Article and Find Full Text PDFBMC Bioinformatics
December 2021
Background: Existing computational methods for studying miRNA regulation are mostly based on bulk miRNA and mRNA expression data. However, bulk data only allows the analysis of miRNA regulation regarding a group of cells, rather than the miRNA regulation unique to individual cells. Recent advance in single-cell miRNA-mRNA co-sequencing technology has opened a way for investigating miRNA regulation at single-cell level.
View Article and Find Full Text PDFBackground: Accurate prognosis and identification of cancer subtypes at molecular level are important steps towards effective and personalised treatments of breast cancer. To this end, many computational methods have been developed to use gene (mRNA) expression data for breast cancer subtyping and prognosis. Meanwhile, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been extensively studied in the last 2 decades and their associations with breast cancer subtypes and prognosis have been evidenced.
View Article and Find Full Text PDFMotivation: Predicting cell locations is important since with the understanding of cell locations, we may estimate the function of cells and their integration with the spatial environment. Thus, the DREAM challenge on single-cell transcriptomics required participants to predict the locations of single cells in the Drosophila embryo using single-cell transcriptomic data.
Results: We have developed over 50 pipelines by combining different ways of preprocessing the RNA-seq data, selecting the genes, predicting the cell locations and validating predicted cell locations, resulting in the winning methods which were ranked second in sub-challenge 1, first in sub-challenge 2 and third in sub-challenge 3.
IEEE/ACM Trans Comput Biol Bioinform
January 2022
The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced.
View Article and Find Full Text PDFMotivation: Unravelling cancer driver genes is important in cancer research. Although computational methods have been developed to identify cancer drivers, most of them detect cancer drivers at population level. However, two patients who have the same cancer type and receive the same treatment may have different outcomes because each patient has a different genome and their disease might be driven by different driver genes.
View Article and Find Full Text PDFIdentifying the genes responsible for driving cancer is of critical importance for directing treatment. Accordingly, multiple computational tools have been developed to facilitate this task. Due to the different methods employed by these tools, different data considered by the tools, and the rapidly evolving nature of the field, the selection of an appropriate tool for cancer driver discovery is not straightforward.
View Article and Find Full Text PDFIn molecular biology, microRNA (miRNA) sponges are RNA transcripts which compete with other RNA transcripts for binding with miRNAs. Research has shown that miRNA sponges have a fundamental impact on tissue development and disease progression. Generally, to achieve a specific biological function, miRNA sponges tend to form modules or communities in a biological system.
View Article and Find Full Text PDFBioinformatics
September 2021
Motivation: Identifying meaningful cancer driver genes in a cohort of tumors is a challenging task in cancer genomics. Although existing studies have identified known cancer drivers, most of them focus on detecting coding drivers with mutations. It is acknowledged that non-coding drivers can regulate driver mutations to promote cancer growth.
View Article and Find Full Text PDFSummary: The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs.
View Article and Find Full Text PDFMotivation: microRNAs (miRNAs) are important gene regulators and they are involved in many biological processes, including cancer progression. Therefore, correctly identifying miRNA-mRNA interactions is a crucial task. To this end, a huge number of computational methods has been developed, but they mainly use the data at one snapshot and ignore the dynamics of a biological process.
View Article and Find Full Text PDFSingle-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage.
View Article and Find Full Text PDFBreast cancer prognosis is challenging due to the heterogeneity of the disease. Various computational methods using bulk RNA-seq data have been proposed for breast cancer prognosis. However, these methods suffer from limited performances or ambiguous biological relevance, as a result of the neglect of intra-tumor heterogeneity.
View Article and Find Full Text PDFUntil now, existing methods for identifying lncRNA related miRNA sponge modules mainly rely on lncRNA related miRNA sponge interaction networks, which may not provide a full picture of miRNA sponging activities in biological conditions. Hence there is a strong need of new computational methods to identify lncRNA related miRNA sponge modules. In this work, we propose a framework, LMSM, to identify LncRNA related MiRNA Sponge Modules from heterogeneous data.
View Article and Find Full Text PDFAfter publication of this supplement article [1], it was brought to our attention that the Fig. 3 was incorrect. The correct Fig.
View Article and Find Full Text PDFBMC Bioinformatics
December 2019
Background: Studying multiple microRNAs (miRNAs) synergism in gene regulation could help to understand the regulatory mechanisms of complicated human diseases caused by miRNAs. Several existing methods have been presented to infer miRNA synergism. Most of the current methods assume that miRNAs with shared targets at the sequence level are working synergistically.
View Article and Find Full Text PDFA key task in cancer genomics research is to identify cancer driver genes. As these genes initialise and progress cancer, understanding them is critical in designing effective cancer interventions. Although there are several methods developed to discover cancer drivers, most of them only identify coding drivers.
View Article and Find Full Text PDF