Publications by authors named "Thu-Thao T Pham"

Understanding host responses to viral gene therapy vectors is necessary for the development of safe and efficacious in vivo gene transfer agents. We describe the use of high-density spotted complementary DNA microarrays in monitoring the in vivo host transcriptional responses in mouse liver upon administration of either a "first-generation"adenoviral (Ad) vector, a helper-dependent "gutless" adenoviral (HD) vector, or an adeno-associated viral (AAV) vector containing human factor IX (hFIX) expression cassettes. Since HD and AAV do not contain any viral genes, they allow us to assess the host response to the viral capsid and packaged nonviral DNA in whole animals.

View Article and Find Full Text PDF

In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E.

View Article and Find Full Text PDF

We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4.

View Article and Find Full Text PDF

The innate host response to lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis is unusual in that different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) as well as an antagonist or agonist for TLR4. In this report it is shown that P. gingivalis LPS is highly heterogeneous, containing more lipid A species than previously described.

View Article and Find Full Text PDF

RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

View Article and Find Full Text PDF