The synthesis and characterization of a series of group 4 carboxylate derivatives ([M(ORc)4] where M = Ti, Zr, Hf) was undertaken for potential utility as precursors to ceramic nanowires. The attempted syntheses of the [M(ORc)4] precursors were undertaken from the reaction of [M(OBu(t))4] with a select set of carboxylic acids (H-ORc where ORc = OPc (O2CCH(CH3)2), OBc (O2CC(CH3)3), ONc (O2CCH2C(CH3)3)). The products were identified by single-crystal X-ray diffraction studies as [Ti(η(2)-OBc)3(OBu(t))] (1), [Zr2(μ3-O)(μ-OPc)4(μ,η(2)-OPc)(η(2)-OPc)]2 (2), [H]2[Zr(η(2)-OBc)2(OBc)2(OBc)2] (3), [Zr(μ-ONc)2(η(2)-ONc)2]2 (4), or [Hf(μ-ORc)2(η(2)-ORc)2]2 [ORc = OPc (5), OBc (6, shown), ONc (7)].
View Article and Find Full Text PDFA series of tin(II) amide alkoxides ([(OR)Sn(NMe(2))](n)) and tin(II) alkoxides ([Sn(OR)(2)](n)) were investigated as precursors for the production of tin oxide (SnO(x)) nanowires. The precursors were synthesized from the metathesis of tin dimethylamide ([Sn(NMe(2))(2)](2)) and a series of aryl alcohols {H-OAr = H-OC(6)H(4)(R)-2: R = CH(3) (H-oMP), CH(CH(3))(2) (H-oPP), C(CH(3))(3) (H-oBP)] or [H-OC(6)H(3)(R)(2)-2,6: R = CH(3) (H-DMP), CH(CH(3))(2) (H-DIP), C(CH(3))(3) (H-DBP)]}. The 1:1 products were all identified as the dinuclear species [(OAr)Sn(μ-NMe(2))](2) where OAr = oMP (1), oPP (2), oBP (3), DMP (4), DIP (5), DBP (6).
View Article and Find Full Text PDF