Publications by authors named "Thu Ngoc Minh Vu"

Incompatibility group C (IncC) plasmids are large (50-400 kb), broad host range plasmids that drive the spread of genes conferring resistance to all classes of antibiotics, most notably the bla gene that confers resistance to last-line carbapenems and the mcr-3 gene that confers resistance to colistin. Several recent studies have improved our understanding of the basic biological mechanisms driving the success of IncC, in particular the identification of multiple novel IncC conjugation genes by transposon directed insertion-site sequencing. Here, one of these genes, dtrJ, was examined in further detail.

View Article and Find Full Text PDF

The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K+) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain.

View Article and Find Full Text PDF