The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only.
View Article and Find Full Text PDFUsing extracts from herbs for silver nanoparticle synthesis is attracting attention for its anticancer activity. Ardisia gigantifolia is a herb used in traditional Chinese medicine for treating stomach ailments, and some compounds isolated from this plant exhibit the inhibitory activity against different cancer cells. However, the synthesis of silver nanoparticle using extract of Ardisia gigantiflia leaves and their anti-cancer activity was not reported.
View Article and Find Full Text PDFSex hormone binding globulin (SHBG) is a hepatokine that binds to circulating steroid hormones (testosterone, oestradiol) to regulate their concentration in the bloodstream. Recently SHBG was recognized as an essential biomarker for metabolic syndrome (MetS) and hepatic steatosis development. At the hepatic level, the production of SHBG is mainly regulated by sex steroids and thyroxine.
View Article and Find Full Text PDFThe badnavirus replication cycle is poorly understood and most knowledge is based on extrapolations from model viruses such as (CaMV). However, in contrast to CaMV, badnaviruses are thought not to produce viroplasms and therefore it has been a mystery as to where virion assembly occurs. In this study, ultrathin sections of a banana leaf infected with a badnavirus, banana streak MY virus (BSMYV), were examined by transmission electron microscopy.
View Article and Find Full Text PDFThe challenge of bringing DNA methylation biomarkers into clinic is the lack of simple methodologies as most current assays have been developed for research purposes. To address the limitations of current methods, we describe herein a novel methyl-protein domain (MBD) enrichment protocol for simple yet rapid and highly stringent selection of highly methylated DNA from limiting input samples. We then coupled this with a DNA-mediated flocculation assay for rapid and low cost naked-eye binary evaluation of highly methylated genes in cell line and blood DNA.
View Article and Find Full Text PDFBackground: Aberrant DNA methylation marks are potential disease biomarkers, and detecting both total genomic and gene-specific DNA methylation can aid in clinical decisions. While a plethora of methods exist in research, simpler, more convenient alternatives are needed to enhance both routine diagnostics and research.
Results: Herein, we describe colorimetric assays using methyl-binding domain (MBD) proteins for rapid and convenient evaluation of total genomic and gene-specific methylation from 50 ng or less DNA input in under 2 h.