Understanding how natural and engineered peptides enter cells would facilitate the elucidation of biochemical mechanisms underlying cell biology and is pivotal for developing effective intracellular targeting strategies. In this study, we demonstrate that our peptide stapling technique, fluorine-thiol displacement reaction (FTDR), can produce flexibly constrained peptides with significantly improved cellular uptake, particularly into the nucleus. This platform confers enhanced flexibility, which is further amplified by the inclusion of a D-amino acid, while maintaining environment-dependent α helicity, resulting in highly permeable peptides without the need for additional cell-penetrating motifs.
View Article and Find Full Text PDFBreast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity.
View Article and Find Full Text PDFCorticosteroids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and are routinely prescribed to breast cancer patients undergoing chemotherapy treatment to alleviate side effects. Triple-negative breast cancers (TNBCs) account for 15% to 20% of diagnoses and lack expression of estrogen and progesterone receptors as well as amplified HER2, but they often express high GR levels. GR is a mediator of TNBC progression to advanced metastatic disease; however, the mechanisms underpinning this transition to more aggressive behavior remain elusive.
View Article and Find Full Text PDFThe classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC).
View Article and Find Full Text PDFRecurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER) breast cancer. Disseminated ER tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs).
View Article and Find Full Text PDFAlthough incurable, the prognosis for patients with metastatic breast cancer (MBC) has considerably improved with the approvals of multiple targeted and cytotoxic therapies. For hormone receptor-positive (HR+), ie, estrogen receptor and progesterone receptor positive (ER+/PgR+) and human epidermal growth factor receptor-2 negative (ie, ERBB2 gene nonamplified or HER2-) MBC, current approved treatment options include palliative endocrine therapy (ET), cyclin-dependent kinase (CDK 4/6) inhibitors, mTOR inhibitors, and PI3 kinase inhibitors. Most treatments target ER+ disease regardless of PgR status.
View Article and Find Full Text PDFSteroid hormone receptors (SRs) are classically defined as ligand-activated transcription factors that function as master regulators of gene programs important for a wide range of processes governing adult physiology, development, and cell or tissue homeostasis. A second function of SRs includes the ability to activate cytoplasmic signaling pathways. Estrogen (ER), androgen (AR), and progesterone (PR) receptors bind directly to membrane-associated signaling molecules including mitogenic protein kinases (i.
View Article and Find Full Text PDFProgesterone receptors (PRs) are key modifiers of estrogen receptor (ER) target genes and drivers of luminal breast cancer progression. Total PR expression, rather than isoform-specific PR expression, is measured in breast tumors as an indicator of functional ER. We identified phenotypic differences between PR-A and PR-B in luminal breast cancer models with a focus on tumorsphere biology.
View Article and Find Full Text PDFSteroid hormone receptors (SRs) have a multitude of functions in human biology and disease progression. The SR family of related ligand-activated transcription factors includes androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone receptors. Antiestrogen or estrogen receptor (ER)-targeted therapies to block ER action remain the primary treatment of luminal breast cancers.
View Article and Find Full Text PDFProline, glutamic acid, leucine-rich protein 1 (PELP1) is overexpressed in approximately 80% of invasive breast tumors. PELP1 dynamically shuttles between the nucleus and cytoplasm, but is primarily nuclear in normal breast tissue. However, altered localization of PELP1 to the cytoplasm is an oncogenic event that promotes breast cancer initiation and progression.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
February 2018
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR).
View Article and Find Full Text PDFBackground: Estrogen and progesterone are potent breast mitogens. In addition to steroid hormones, multiple signaling pathways input to estrogen receptor (ER) and progesterone receptor (PR) actions via posttranslational events. Protein kinases commonly activated in breast cancers phosphorylate steroid hormone receptors (SRs) and profoundly impact their activities.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we report the first detailed functional analysis of C797.
View Article and Find Full Text PDFProtein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous hydrogen peroxide (H₂O₂) by membrane-bound NADPH oxidases.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) exemplifies the family of receptor tyrosine kinases that mediate numerous cellular processes, including growth, proliferation, and differentiation. Moreover, gene amplification and EGFR mutations have been identified in a number of human malignancies, making this receptor an important target for the development of anticancer drugs. In addition to ligand-dependent activation and concomitant tyrosine phosphorylation, EGFR stimulation results in the localized generation of H(2)O(2) by NADPH-dependent oxidases.
View Article and Find Full Text PDFProtein sulfenylation is a post-translational modification of emerging importance in higher eukaryotes. However, investigation of its diverse roles remains challenging, particularly within a native cellular environment. Herein we report the development and application of DYn-2, a new chemoselective probe for detecting sulfenylated proteins in human cells.
View Article and Find Full Text PDFWe have developed an approach that allows relative quantification of protein sulfenic acids using a pair of light and heavy isotope labled probes, DAz-2 and d(6)-DAz-2. In conjunction with a new complementary acid-cleavable linker, Yn-ACL, we demonstrate that tagged peptides are successfully labeled, enriched, and fully characterized by LC-MS/MS analysis. Overall, this method can be applied to map sites of cysteine oxidation and compare protein sulfenylation in normal and disease states.
View Article and Find Full Text PDF