Publications by authors named "Thotapalli P Sastry"

The raising burden of cancer can be controlled by fabricating smart nanomaterials that can detect tumours easily. In this study, we report about the preparation of radiopaque fibrin nanocomplex (RFN) for imaging solid tumours. The nanocomplex exhibits high X-ray absorption and therefore utilizes X-ray radiography and computed tomography (CT) for imaging tumours.

View Article and Find Full Text PDF

Purpose: Bluefin Trevally (Caranx melampygus) fish is mainly used for fillet production, the bones of which are discarded as a major solid waste in the fish food processing industry. In the present study, novel collagen films were prepared using the bones of Bluefin Trevally (BT). The study investigates the potential of using this collagen film as a wound dressing material.

View Article and Find Full Text PDF

Mosquito-borne diseases are of major concern as they cause devastating health effects, morbidity, and mortality in the human population. Conventional pesticides have failed to curb the mosquito population due to the development of insensitivity in mosquitoes. Hence, higher dosages of pesticides along with their toxic solubilizers have been employed, which have led to raise in pesticide pollution load, environmental toxicity, and human health concerns.

View Article and Find Full Text PDF

The present study efforts at fabricating chitosan-fibrin composite (CF) scaffolds impregnated with quercetin for wound dressing application and aims at investigating their physicochemical properties. CF scaffolds were prepared by mixing acidic solution of chitosan with an alkaline solution of fibrin, to which quercetin (Q) was added, homogenized and lyophilized obtain Q-CF scaffold. FTIR spectra were used to determine the interactions between the functional groups of quercetin and CF scaffolds.

View Article and Find Full Text PDF

Background: A variety of bioimaging tools assists in the diagnosis and evaluation of rheumatoid arthritis (RA) and other osteoarthritis. However, detection of RA in the early stages by targeting its macrophages with suitable contrast agents will help in arresting the progression of the disease.

Methods: In the present study, we investigated the effectiveness of using magnetic fibrin nanoparticles (MFNPs) conjugated with folic acid (FA-MFNPs) as a specific contrast agent to target the activated macrophages, which overexpress the folate receptors (FR) in the knee joints of rats with antigen-induced arthritis (AIA).

View Article and Find Full Text PDF

In the present study, chitosan-fibrin nanocomposites (CFNs) were prepared using a novel method and analysed for their physico-chemical properties. TEM and SEM studies revealed their size in the range of 24-28 nm with zeta potential value of + 16 mV. Anti-bacterial activity of CFN was investigated against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Recently, bioretention and toxicity of injected nanoparticles in the body has drawn much attention in biomedical research. In the present study, 5 mg Fe per kg body weight of magnetic fibrin nanoparticles (MFNPs) were injected into mice intravenously and investigated for their blood clearance profile, biodistribution, haematology and pathology studies for a time period of 28 days. Moderately long circulation of MFNPs in blood was observed with probable degradation and excretion into the bloodstream via monoatomic iron forms.

View Article and Find Full Text PDF

This work presents a novel approach for functionalization of silver nanoparticles (AgNPs) and cross-linking them with collagen to form collagen based scaffolds with enhanced medical applications. Functionalized AgNPs of size 10-50 nm were synthesized and confirmed by using UV-vis, fluorescence spectroscopy and particle size analysis. Stable nano-sized particles were functionalized and cross-linked with succinylated collagen (SC) and lyophilized to form functionalized silver nanoparticles cross-linked with succinylated collagen (FSCSC) scaffolds.

View Article and Find Full Text PDF

There is an emerging need for the development of new anticancer nanocomposite which exhibits imaging properties and targeted drug delivery. In the present study, a nanobiocomposite was prepared, in this direction, which contains carbon nanoparticles (CNP), methotrexate (Mtx) and asparaginase (Asp) coupled with fluorescein isothiocyanate (FITC). The prepared nanobiocomposite kills only the cancer cells due to the presence of Mtx which is a folic acid analogue and targets the cancer cells due to the over expression of folate receptors on their surface and apoptosis occurs due to the anticancer activity of enzyme asparaginase.

View Article and Find Full Text PDF

The effect of Gallic acid (GA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS) on collagen scaffold is investigated. The thermal mechanical analyzer (TMA), differential scanning calorimetric (DSC), and thermogravimetric analysis (TGA) including tensile strength (TS, 180 ± 3 MPa), denaturation temperature (Td, 80.03°C), % elongation (% E, 180 ± 9) and weight loss (31.

View Article and Find Full Text PDF

The present investigation attempts at fabricating collagen-based scaffolds impregnated with sago starch capped silver nanoparticles (AgNPs), useful for biomedical applications, and aims at studying their physicochemical aspects. AgNPs synthesized through a chemical reduction method, capped using different concentrations of sago starch, are incorporated into collagen derived from fish scales, and lyophilized to form scaffolds. FT-IR spectra confirm and validate the interaction of sago starch capped AgNPs with collagen in the scaffolds.

View Article and Find Full Text PDF

Fibrin used for biomedical applications is prepared by mixing concentrated solutions of fibrinogen and thrombin in presence of cross-linking agents such as Factor XIII or glutaraldehyde. The main drawbacks associated with this procedure include cost, complexity and time required for fibrin preparation. Hence, present study deals with the characterization of physiologically clotted fibrin (PF) for bone tissue engineering and drug delivery applications.

View Article and Find Full Text PDF

Open burn wounds require proper dressings for faster healing and to prevent infection. In the present study, a wound dressing material in sheet form, containing fish scale collagen (FSC), physiologically clotted fibrin (PCF) and Macrotyloma uniflorum plant extract (MPE) was applied on the experimental wounds of rats. It was found that MPE accelerated wound healing, by suppressing the cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) expressions thereby reduced inflammation.

View Article and Find Full Text PDF

In the present study, nanosized hydroxyapatite (nHAp) was formed on iron-fibrin substrates and its physico-chemical properties were characterized. The prepared iron-fibrin-nanohydroxyapatite (IF-nHAp) composite was needle shaped with an average width of about 30nm and length of 80nm. The vibrating sample magnetometer (VSM) was used to evaluate the superparamagnetic behavior of the nanocomposite, IF-nHAp.

View Article and Find Full Text PDF

Click chemistry approaches are tailored to generate molecular building blocks quickly and reliably by joining small units together selectively and covalently, stably and irreversibly. The vegetable tannins such as hydrolyzable and condensed tannins are capable to produce rather stable radicals or inhibit the progress of radicals and are prone to oxidations such as photo and auto-oxidation, and their anti-oxidant nature is well known. A lot remains to be done to understand the extent of the variation of leather stability, color variation (lightening and darkening reaction of leather), and poor resistance to water uptake for prolonged periods.

View Article and Find Full Text PDF

The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM).

View Article and Find Full Text PDF

Application of plant extracts for the burn/wound treatment is followed over the decades as a common practice and it is an important aspect in clinical management. In this study porous collagen sponges (CS) were prepared using fish scales and were incorporated with mupirocin (CSM) and extracts of Macrotyloma uniflorum (CSPE) separately to impart antimicrobial activity to the sponges. The results showed that the addition of plant extract increased the tensile strength of CSPE and stability against collagenase enzyme.

View Article and Find Full Text PDF

Background: Several issues have been raised emphasizing the harmful toxic effects of metal nanoparticles towards biological systems. Search of biological nanoparticles with excellent biocompatibility and bioavailability could address this problem.

Methods: Fibrin nanoparticles (FNP) were prepared using a novel technique and characterized for their physico-chemical properties.

View Article and Find Full Text PDF

Developing biomaterials having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. Keeping this objective in view we have developed a wound dressing material, in sheet form, containing fish scale collagen (FSC) and physiologically clotted fibrin (PCF), both are by products of aqua food and meat industries respectively. To impart antimicrobial properties to the composite sheet, it was incorporated with Macrotyloma uniflorum plant extract (MPE).

View Article and Find Full Text PDF

The ex vivo cultured limbal stem cells over a biocompatible scaffold are used in the management of limbal stem cell deficiency as an ideal replacement for human amniotic membrane (HAM). A novel source of collagen from fish scales (FSC) was used to fabricate the scaffold. In this study, we have evaluated the physicochemical, mechanical, and culture characteristics of FSC and compared with denuded HAM.

View Article and Find Full Text PDF

Aim: The aim of this study was to compare some of the physicochemical characteristics of type 2 diabetic bones (DBs) and normal bones (NBs).

Materials And Methods: The organic and inorganic parts of human NBs and DBs were separated using conventional methods, and their physicochemical characteristics were compared using infrared (IR) spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM).

Results: The IR spectrum of the collagen part of DBs has showed the presence of carbonyl groups, indicating cross-linking in the α-chain.

View Article and Find Full Text PDF

The present study describes the antimicrobial activity of C-AuNp-Amp (chitosan-capped gold nanoparticles coupled with ampicillin). C-AuNp-Amp was synthesized using the wet precipitation method and characterized using FTIR (Fourier-transform IR) spectroscopy and AFM (atomic force microscopy) techniques. The optimal level of ampicillin concentration that couples with the C-AuNp nanocomposite was determined by using UV-visible spectroscopy.

View Article and Find Full Text PDF

In this report, a novel method for the synthesis of silver nanoparticles on the surface of hydroxyapatite is described. Hydroxyapatite crystals are synthesized from acid mineralized solution, a byproduct of bone glue industries, by a simple chemical precipitation method, which results in the formation of hydroxyapatite nanocrystals. The reduction of silver ions occurs by the electron transfer from the hydroxyl groups on the surface of hydroxyapatite.

View Article and Find Full Text PDF