After the decline of the COVID-19 pandemic, health systems were challenged by the simultaneous prevalence of different respiratory viruses causing a wide overlap in symptoms. This increased the demand for multi-virus diagnostic tests which require suitable pre-analytical workflow solutions in order to receive valid diagnostic results. In this context, the effects of specimen storage duration and temperature on the RNA/DNA copy number stability of influenza A/B, RSV A/B, SARS-CoV-2 and adenovirus were examined for four commercially available transport swab systems and saliva collection devices.
View Article and Find Full Text PDFThe field of liquid biopsy has seen extensive growth in recent decades, making it one of the most promising areas in molecular diagnostics. Circulating cell-free DNA (ccfDNA) especially is used as an analyte in a growing number of diagnostic assays. These assays require specified preanalytical workflows delivering ccfDNA in qualities and quantities that facilitate correct and reliable results.
View Article and Find Full Text PDFBackground: In cancer patients, circulating cell-free DNA (ccfDNA) can contain tumor-derived DNA (ctDNA), which enables noninvasive diagnosis, real-time monitoring, and treatment susceptibility testing. However, ctDNA fractions are highly variable, which challenges downstream applications. Therefore, established preanalytical work flows in combination with cost-efficient and reproducible reference materials for ccfDNA analyses are crucial for analytical validity and subsequently for clinical decision-making.
View Article and Find Full Text PDFRadiological exposure scenarios involving large numbers of people require a rapid and high-throughput method to identify the unexposed, and those exposed to low- and high-dose radiation. Those with high-dose exposure, e.g.
View Article and Find Full Text PDFPurpose Of Review: Liquid biopsy analyses based on circulating cell-free nucleic acids, circulating tumor cells or other diseased cells from organs, and exosomes or other microvesicles in blood offer new means for non-invasive diagnostic applications. The main goal of this review is to explain the importance of preserving whole blood specimens after blood draw for use as liquid biopsies, and to summarize preservation solutions that are currently available.
Recent Findings: Despite the great potential of liquid biopsies for diagnostics and disease management, besides non-invasive prenatal testing (NIPT), only a few liquid biopsy applications are fully implemented for routine in vitro diagnostic testing.
Stud Health Technol Inform
April 2018
The "research apartment Halberstadtstraße" (HSS) in Braunschweig, Germany, is the attempt to realize a personal living environment as a room for diagnostics and therapy with the support of health-enabling and ambient assistive technologies (HEAAT). As a research tool, the HSS will enable the efficient implementation of new HEAAT and help in evaluating these under controlled real-life conditions. This new research tool will therefore be the missing link between artificial laboratory and complete real-life conditions.
View Article and Find Full Text PDFThis chapter describes several methods for the isolation of miRNAs from peripheral whole blood samples or constituent fractions thereof, such as peripheral blood mononuclear cells, plasma, and serum. The methods described here are recently introduced protocols dedicated to the isolation of total RNAs including small RNAs, e.g.
View Article and Find Full Text PDFBlood-based mRNA expression profiling has already become an important issue in clinical applications. More recently, the characterization of the small RNA transcriptome offers additional avenues for diagnostic approaches. However, when applying miRNA expression profiling in routine clinical settings, the method of RNA preservation and the manner of RNA extraction as well as the reliability of the miRNA profiling procedure have to be carefully considered.
View Article and Find Full Text PDFWe have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation.
View Article and Find Full Text PDF