Publications by authors named "Thorsten Schwerte"

The relationship between diet and health is well-researched, and there is also information regarding the effects of diet on mental health. This study aimed to investigate whether motivation to optimize lifestyles without regulations or restrictions could improve the health of rotating shift workers. In this pilot study, 18 male shift workers were randomly divided into two groups.

View Article and Find Full Text PDF

In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020.

View Article and Find Full Text PDF

Previous studies have shown that shift workers are more prone to non-communicable diseases. The aim of the present crossover study is to investigate whether it is possible to improve the health status of shift workers. Nineteen male shift workers (38.

View Article and Find Full Text PDF

We present a dual modality functional optical coherence tomography and photoacoustic microscopy (OCT-PAM) system. The photoacoustic modality employs an akinetic optical sensor with a large imaging window. This imaging window enables direct reflection mode operation, and a seamless integration of optical coherence tomography (OCT) as a second imaging modality.

View Article and Find Full Text PDF

orientation-dependent reflection; structural color; butterflies; imprinting technique; instrument adaptation.

View Article and Find Full Text PDF

This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain a large positive replica using negative imprints via Polyvinylsiloxane. The developed method is low-tech and high-yield and is thus substantially easier and less expensive than previous methods.

View Article and Find Full Text PDF

The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.

View Article and Find Full Text PDF

Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates.

View Article and Find Full Text PDF

The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in pathogenesis. The bi-directionality of the interaction between both pathways has been shown on physiological and only recently also on molecular level. But the consequences of a disturbed circadian rhythm for the hypoxic response and the cardiovascular system have never been addressed in any organism.

View Article and Find Full Text PDF

Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia.

View Article and Find Full Text PDF

The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in tumorgenesis. Interactions between both pathways have repeatedly been reported for mammals during the last decade, the molecular basis, though, has not been identified so far. Expression levels of oxygen-regulated and circadian clock genes in zebrafish larvae (Danio rerio) and zebrafish cell lines were significantly altered under hypoxic conditions.

View Article and Find Full Text PDF

Storage of serotonin in teleost gill cells has been detected in neurons, polymorphous granular cells and in neuroepithelial cells. Innervation from the glossopharyngeal nerve (first gill arch) and the vagus nerve (all gill arches) carries afferent as well as efferent fibers. This innervation extends to the efferent filament artery, including the sphincter muscle associated with the efferent filament artery, but except for the Antarctic fish does not reach the afferent filament artery.

View Article and Find Full Text PDF

The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish.

View Article and Find Full Text PDF

Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h.

View Article and Find Full Text PDF

β-Adrenergic receptors (βARs) are crucial for maintaining the rate and force of cardiac muscle contraction in vertebrates. Zebrafish (Danio rerio) have one β1AR gene and two β2AR genes (β2aAR and β2bAR). We examined the roles of these receptors in larval zebrafish in vivo by assessing the impact of translational gene knockdown on cardiac function.

View Article and Find Full Text PDF

Technical advances that have made it possible to perform physiological measurements on very small organisms, including those in embryonic and larval stages, have resulted in the formation of the discipline of developmental physiology. The transparency and size of developing organisms in some areas permit insights into physiological processes that cannot be obtained with opaque, adult organisms. On the other hand, it is widely accepted that without eggs, there are no chickens, so physiological adaptations during early life are just as important to species survival as those manifested by adults.

View Article and Find Full Text PDF

In the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate.

View Article and Find Full Text PDF

Known vertebrate response to low oxygen concentration include change in carbohydrate metabolism, increase in nitric oxide, stimulation of red blood cell and hemoglobin production and induction of gene expression for glycolytic enzymes and hormones. Also, extreme hypoxia plays main role in pathological studies of cardiac dysfunction. The morphological and physiological developmental studies of the cardiovascular system under low oxygen are important as it is directly related to oxygen supply and consumption.

View Article and Find Full Text PDF

For the erythroid cell lineage development in vertebrates, GATA-1 transcription factor is essential. In our report, we have demonstrated that the approximate developmental status of erythrocytes and the progression of blood formation can be studied non-invasively in GATA-1:DsRed transgenic zebrafish (Danio rerio) embryo and larva by characterization of fluorescence luminance spectra. The study was carried out for animals maintained under normoxic and hypoxic (152 and 20 torr PO(2) respectively) conditions up to 10 days post-fertilization (dpf) and total blood cell concentrations and fluorescent cells' percentage were determined for this purpose.

View Article and Find Full Text PDF

We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe hyperventilation and cardiophysiologic response. The vhl mutants develop polycythemia with concomitantly increased epo/epor mRNA levels and erythropoietin signaling.

View Article and Find Full Text PDF

Independent of species, the cardiovascular system is the first functioning component of developing vertebrate embryos. One of the main hypotheses is the assumption that larval and juvenile stages of fish and amphibians are not just smaller versions of an adult phenotype. In this review, the cardiovascular and respiratory responses to environmental, genetic and epigenetic perturbations are discussed in detail to understand the relationships between cardiac and respiratory performance, haematopoiesis for embryonic or larval stages with special focus on the popular model animal, the zebrafish.

View Article and Find Full Text PDF

The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) beta(1a) subunit. Lack of beta(1a) results in (i) reduced membrane expression of the pore forming DHPR alpha(1S) subunit, (ii) elimination of alpha(1S) charge movement, and (iii) impediment of arrangement of the DHPRs in groups of four (tetrads) opposing the ryanodine receptor (RyR1), a structural prerequisite for skeletal muscle-type excitation-contraction (EC) coupling. In this study we used relaxed larvae and isolated myotubes as expression systems to discriminate specific functions of beta(1a) from rather general functions of beta isoforms.

View Article and Find Full Text PDF

Blood flow and shear forces are considered to be important parameters possibly stimulating angiogenesis or cardiovascular remodeling. The main objective of this study was to test the hypothesis that a significant reduction in shear forces as a consequence of a significant isovolemic anemia induced by microsurgical techniques during early larval development of the zebrafish might induce a compensatory stimulation of erythropoiesis and/or induce a modification of cardiac activity or even the formation of the heart and may influence the shaping of the vascular bed. Blood from 2 day old zebrafish larvae was withdrawn and replaced by zebrafish Ringer's solution, so that the blood cell concentration was reduced by at least 75%.

View Article and Find Full Text PDF

The development of sympatho-vagal control of cardiac activity was analyzed in zebrafish (Danio rerio) larvae from 2 to 15 days post fertilization (d.p.f.

View Article and Find Full Text PDF