The development of an improved short and efficient commercial synthesis of the JAK2 inhibitor, a complex pyrrolopyridine, BMS-911543, is described. During the discovery and development of this synthesis, a Pd-catalyzed C-H functionalization was invented which enabled the rapid union of the key pyrrole and imidazole fragments. The synthesis of this complex, nitrogen-rich heterocycle was accomplished in only six steps (longest linear sequence) from readily available materials.
View Article and Find Full Text PDFTwo efficient asymmetric routes to γ-secretase modulator BMS-932481, under investigation for Alzheimer's disease, have been developed. The key step for the first route involves a challenging enantioselective hydrogenation of an unfunctionalized trisubstituted alkene to establish the benzylic stereocenter, representing a very rare case of achieving high selectivity on a complex substrate. The second route demonstrates the first example of a vinylogous dynamic kinetic resolution (VDKR) ketone reduction, where the carbonyl and the racemizable stereocenter are not contiguous, but are conjugated through a pyrimidine ring.
View Article and Find Full Text PDFA strategy to prepare compounds with multiple chirality axes, which has led to a concise total synthesis of compound 1A with complete stereocontrol, is reported.
View Article and Find Full Text PDFCombination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade.
View Article and Find Full Text PDFKinetic, spectroscopic, crystallographic, and computational studies probing a Pd-catalyzed C-H arylation reaction reveal that mono-oxidation of the bis-phosphine ligand is critical for the formation of the active catalyst. The bis-phosphine mono-oxide is shown to be a hemilabile, bidentate ligand for palladium. Isolation of the oxidative addition adduct, with structural elucidation by X-ray analysis, showed that the mono-oxide was catalytically competent, giving the same reaction rate in the productive reaction as the Pd(II)/xantphos precursor.
View Article and Find Full Text PDFAn enantioselective synthesis of the CGRP antagonist BMS-846372, amenable to large scale preparation, is presented. This new synthesis showcases a chemo- and enantioselective reduction of a cyclohepta[b]pyridine-5,9-dione as well as a Pd-catalyzed alpha-arylation reaction to form the key carbon-carbon bond and set the absolute and relative stereochemistry.
View Article and Find Full Text PDFThe development of a general and mild method for Pd-catalyzed alpha-arylation of a variety of ketones bearing multiple heteroatoms is described. The ligand to metal ratio and the position of the heteroatoms with respect to the carbonyl moiety significantly impact the efficiency of these transformations. In addition, these conditions were successfully applied to the alpha-arylation of cyclic imines.
View Article and Find Full Text PDFA highly efficient synthesis of sitagliptin, a potent and selective DPP-4 inhibitor for the treatment of type 2 diabetes mellitus (T2DM), has been developed. The key dehydrositagliptin intermediate 9 is prepared in three steps in one pot and directly isolated in 82% yield and >99.6 wt % purity.
View Article and Find Full Text PDFThe suitability of the Eksigent Express 800 microfluidic eight-channel HPLC instrument for multiparallel normal-phase chiral analysis in support of high-throughput pharmaceutical process research was investigated. Analysis of test mixtures containing the two enantiomers of benzoin and the closely related (R,S)-dihydrobenzoin, was carried out in a 96-well microplate, affording rapid (<2 h) and accurate assessment of enantiopurity. In a second example, use of the instrument to support high-throughput catalyst screening of the asymmetric hydrogenation of a prochiral unsaturated ester is presented, in which method development (gradient screening of four columns and two eluents, followed by optimization to afford a fast analytical method) and analysis of a 96-well microplate was carried out within a single working day.
View Article and Find Full Text PDFRuthenium complexes employing axially chiral ligands were found to be effective asymmetric hydrogenation catalysts for the reduction of alpha,beta-unsaturated ene acid 1-E to give 2, a prostaglandin D2 (PGD2) receptor antagonist. With [(S-BINAP)Ru(p-cymene)Cl2]2 (3, S-BINAP = (S)-(+)-2,2'-bis(diphenylphospino)-1,1'-binapthyl), it was discovered that low hydrogen pressures (<30 psi) were essential to achieve high enantioselectivities (92% ee). A detailed mechanistic study was undertaken to elucidate this pressure dependence.
View Article and Find Full Text PDF[reaction: see text] The catalytic asymmetric hydrogenation of enamine amides and esters with catalyst Rh-1a, prepared from ferrocenyl based ligand 1a or 1b and [(COD)RhCl](2), has been shown through kinetic studies to suffer from product inhibition. Enamine ester substrates have also been shown to be incompatible with the amine products of the reaction in methanol. In situ protection of the amine products with di-tert-butyl dicarbonate eliminates functional group incompatibility of ester substrates and eliminates product inhibition in the reaction.
View Article and Find Full Text PDFA direct asymmetric hydrogenation of unprotected enamino esters and amides is described. Catalyzed by Rh complexes with Josiphos-type chiral ligands, this method gives beta-amino esters and amides in high yield and high ee (93-97% ee). No acyl protection/deprotection is required.
View Article and Find Full Text PDFAn efficient asymmetric synthesis of a selective estrogen receptor modulator (SERM) that has a dihydrobenzoxathiin core structure bearing two stereogenic centers is reported. The stereogenic centers were established by an unprecedented chiral sulfoxide-directed stereospecific reduction of an alpha,beta-unsaturated sulfoxide to the saturated sulfide in one step. Studies to elucidate the mechanism for this reduction are reported.
View Article and Find Full Text PDF