Publications by authors named "Thorsten Metzroth"

We present detailed molecular dynamics (MD) simulations of mechanically interlocked calix[4]arene-catenanes under external force. Single-molecule force spectroscopy experiments revealed that the separation of dimers with two aliphatic loops results in reversible hydrogen bond breakage through an intermediate in a triple-well potential, while the tetra-loop species separates in a one-step manner (Janke, M.; et al.

View Article and Find Full Text PDF

The physics of nanoscopic systems is strongly governed by thermal fluctuations that produce significant deviations from the behaviour of large ensembles. Stretching experiments of single molecules offer a unique way to study fundamental theories of statistical mechanics, as recently shown for the unzipping of RNA hairpins. Here, we report a molecular design based on oligo calix[4]arene catenanes-calixarene dimers held together by 16 hydrogen bridges-in which loops within the molecules limit how far the calixarene nanocapsules can be separated.

View Article and Find Full Text PDF

In this paper we present a parallel adaptation of a highly efficient coupled-cluster algorithm for calculating coupled-cluster singles and doubles (CCSD) and coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations (CCSD(T)) energies, gradients, and, for the first time, analytic second derivatives. A minimal-effort strategy is outlined that leads to an amplitude-replicated, communication-minimized implementation by parallelizing the time-determining steps for CCSD and CCSD(T). The resulting algorithm is aimed at affordable cluster architectures consisting of compute nodes with sufficient memory and local disk space and that are connected by standard communication networks like Gigabit Ethernet.

View Article and Find Full Text PDF

The arrangement of discotic hexa-peri-hexabenzocoronenes (HBCs) into columnar helical superstructures has been investigated in relation to their molecular architecture. The supramolecular structure of two hexaphenyl-substituted HBC derivatives, differing only in the chiral/achiral nature of the attached alkyl side chains, was studied by circular dichroism and temperature-dependent wide-angle X-ray diffraction on oriented filaments. A structural model in agreement with the experimental observations was developed on the basis of accompanying quantum-chemical calculations.

View Article and Find Full Text PDF

Sulfenic acid (HSOH, 1) has been synthesized in the gas-phase by low-pressure high-temperature (1150 degrees C) pyrolysis of di-tert-butyl sulfoxide (tBu(2)SO, 2) and characterized by means of matrix isolation and gas-phase IR spectroscopy. High-level coupled-cluster (CC) calculations (CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ) support the first identification of the gas-phase IR spectrum of 1 and enable its spectral characterization. Five of the six vibrational fundamentals of matrix-isolated 1 have been assigned, and its rotational-resolved gas-phase IR spectrum provides additional information on the O-H and S-H stretching fundamentals.

View Article and Find Full Text PDF

The structure of multiply hydrogen-bonded systems is determined with picometer accuracy by a combined solid-state NMR and quantum-chemical approach. On the experimental side, advanced 1H-15N dipolar recoupling NMR techniques are capable of providing proton-nitrogen distances of up to about 250 pm with an accuracy level of +/-1 pm for short distances (i.e.

View Article and Find Full Text PDF