Publications by authors named "Thorsten Keller"

Article Synopsis
  • Belantamab mafodotin is an innovative drug approved for treating multiple myeloma patients who have not responded to other therapies, providing an alternative for those who can't use CAR-T or bispecific antibodies.
  • The drug's unique ocular side effects, like corneal microcysts and keratopathy, pose challenges for broader usage, and the study identifies a possible mechanism through which the drug affects the eyes via soluble BCMA (sBCMA) in tear fluid.
  • Results show that inhibiting the uptake of sBCMA could prevent keratopathy, suggesting that future treatment strategies might involve using different therapies before administering belantamab or combining it with gamma-secretase inhibitors in ongoing research.
View Article and Find Full Text PDF

The usefulness of perfluorocarbon nanoemulsions for the imaging of experimental myocarditis has been demonstrated in a high-field 9.4 Tesla MRI scanner. Our proof-of-concept study investigated the imaging capacity of PFC-based F/H MRI in an animal myocarditis model using a clinical field strength of 1.

View Article and Find Full Text PDF

Nanohydrogels combine advantages of hydrogels and nanoparticles. In particular, they represent promising drug delivery systems. Nanogel synthesis by oxidative condensation of polyglycidol prepolymers, that are modified with thiol groups, results in crosslinking by disulfide bonds.

View Article and Find Full Text PDF

The regulatory solute carrier protein, family 1, member 1 (RS1) modulates via its N-terminal domain RS1-reg the activity of Na -d-glucose cotransporter 1 (SGLT1) and thereby the glucose uptake in the small intestine by blocking the release of SGLT1-containing vesicles at the trans-Golgi network (TGN). The antidiabetic activity of RS1 is mediated by ornithindecarboxylase 1 (ODC1), catalyzing the conversion of ornithine to putrescine. Putrescine can bind to a buddying protein complex for SGLT1-containing vesicles at the membrane of the TGN, triggering vesicle release.

View Article and Find Full Text PDF

Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer's backbone.

View Article and Find Full Text PDF

Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup.

View Article and Find Full Text PDF

Organic cation transporters OCT1 () and OCT2 () are critically involved in absorption and excretion of diverse cationic drugs. Because drug-drug interactions at these transporters may induce adverse drug effects in patients, in vitro testing during drug development for interaction with the human transporters is mandatory. Recent data performed with rat OCT1 (rOCT1) suggest that currently performed in vitro tests assuming one polyspecific binding site are insufficient.

View Article and Find Full Text PDF

A domain of protein RS1 () called RS1-Reg down-regulates the plasma membrane abundance of Na-d-glucose cotransporter SGLT1 by blocking the exocytotic pathway at the -Golgi. This effect is blunted by intracellular glucose but prevails when serine in a QSP (Gln-Ser-Pro) motif is replaced by glutamate [RS1-Reg(S20E)]. RS1-Reg binds to ornithine decarboxylase (ODC) and inhibits ODC in a glucose-dependent manner.

View Article and Find Full Text PDF

Na-d-glucose cotransporter 1 (SGLT1) is rate-limiting for glucose absorption in the small intestine. Shortly after intake of glucose-rich food, SGLT1 abundance in the luminal membrane of the small intestine is increased. This upregulation occurs via glucose-induced acceleration of the release of SGLT1-containing vesicles from the trans-Golgi network (TGN), which is regulated by a domain of protein RS1 (RSC1A1) named RS1-Reg.

View Article and Find Full Text PDF

Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs.

View Article and Find Full Text PDF

Cellular uptake adapts rapidly to physiologic demands by changing transporter abundance in the plasma membrane. The human gene RSC1A1 codes for a 67-kDa protein named RS1 that has been shown to induce downregulation of the sodium-D-glucose cotransporter 1 (SGLT1) and of the concentrative nucleoside transporter 1 (CNT1) in the plasma membrane by blocking exocytosis at the Golgi. Injecting RS1 fragments into Xenopus laevis oocytes expressing SGLT1 or CNT1 and measuring the expressed uptake of α-methylglucoside or uridine 1 hour later, we identified a RS1 domain (RS1-Reg) containing multiple predicted phosphorylation sites that is responsible for this post-translational downregulation of SGLT1 and CNT1.

View Article and Find Full Text PDF

Improved procedures for sample preparation and proteomic data analysis allowed us to identify 7700 different proteins in mouse small intestinal mucosa and calculate the concentrations of >5000 proteins. We compared protein concentrations of small intestinal mucosa from mice that were fed for two months with normal diet (ND) containing 34.4% carbohydrates, 19.

View Article and Find Full Text PDF

Polyspecific organic cation transporter Oct2 from rat (gene Slc22A2) has been previously shown to transport Cs(+). Here we report that human OCT2 (hOCT2) is able to transport Cd(2+) showing substrate saturation with a Michaelis-Menten constant (Km) of 54 ± 5.8 μM.

View Article and Find Full Text PDF

Organic cation transporters are membrane potential-dependent facilitative diffusion systems. Functional studies, extensive mutagenesis, and homology modeling indicate the following mechanism. A transporter conformation with a large outward-open cleft binds extracellular substrate, passes a state in which the substrate is occluded, turns to a conformation with an inward-open cleft, releases substrate, and subsequently turns back to the outward-open state.

View Article and Find Full Text PDF

Polyspecific organic anion transporters (OATs) and organic cation transporters (OCTs) of the SLC22 transporter family play a pivotal role in absorption, distribution, and excretion of drugs. Polymorphisms in these transporters influence therapeutic effects. On the basis of functional characterizations, homology modeling, and mutagenesis, hypotheses for how OCTs bind and translocate structurally different cations were raised, assuming functionally competent monomers.

View Article and Find Full Text PDF

Polyspecific organic cation and anion transporters of the SLC22 protein family are critically involved in absorption and excretion of drugs. To elucidate transport mechanisms, functional and biophysical characterization of purified transporters is required and tertiary structures must be determined. Here, we synthesized rat organic cation transporters OCT1 and OCT2 and rat organic anion transporter OAT1 in a cell free system in the absence of detergent.

View Article and Find Full Text PDF

Effects of the sulfhydryl reagent methylmethanethiosulfonate (MMTS) on functions of organic cation transporters (OCTs) were investigated. Currents induced by 10 mM choline [I(max(choline))] in Xenopus laevis oocytes expressing rat OCT1 (rOCT1) were increased four- to ninefold after 30-s incubation with 5 mM MMTS whereas I(max(choline)) by rat OCT2 was 70% decreased. MMTS activated the rOCT1 transporter within the plasma membrane without changing stoichiometry between translocated charge and cation.

View Article and Find Full Text PDF

The product of gene RSC1A1, named RS1, participates in transcriptional and posttranscriptional regulation of the sodium-d-glucose cotransporter SGLT1. Using coexpression in oocytes of Xenopus laevis, posttranscriptional inhibition of human SGLT1 (hSGLT1) and some other transporters by human RS1 (hRS1) was demonstrated previously. In the present study, histidine-tagged hRS1 was expressed in oocytes or Sf9 cells and purified using nickel(II)-charged nitrilotriacetic acid-agarose.

View Article and Find Full Text PDF

The rat organic cation transporter rOCT1 with six histidine residues added to the C-terminus was expressed in Sf9 insect cells, and expression of organic cation transport was demonstrated. To purify rOCT1 protein, Sf9 cells were lysed with 1% (w/v) CHAPS [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate], centrifuged, and subjected to sequential affinity chromatography using lentil-lectin Sepharose and nickel(II)-charged nitrilotriacetic acid-agarose. This procedure yielded approximately 70 microg of purified rOCT1 protein from 10 standard culture plates.

View Article and Find Full Text PDF

Detection, purification, and partial characterization of a protease from Aeromonas hydrophila capable of cleaving prothrombin into active thrombin is described. The protease has been characterized with respect to enzymatic characteristics such as optimum reaction conditions for prothrombin activation, usage of additional substrates, as well as sensitivity against inhibitors. The protease activity can reversibly be inhibited by Me2+ chelating agents like ethylenediamine tetraacetic acid.

View Article and Find Full Text PDF

The course of inflammatory glomerular diseases is accompanied by changes in the expression of matrix-associated proteins, growth factors, and mediators in renal mesangial cells. Furthermore, the production of nitric oxide (NO) by the inducible isoform of nitric oxide synthase (iNOS) is enhanced after stimulation with pro-inflammatory cytokines. NO has been demonstrated to be a potent modulator of gene expression.

View Article and Find Full Text PDF