Embryonic cell cycles of amphibians are rapid and lack zygotic transcription and checkpoint control. At the mid-blastula transition, zygotic transcription is initiated and cell divisions become asynchronous. Several cell cycle-related amphibian genes retain 2 distinct forms, maternal and zygotic, but little is known about the functional differences between these 2 forms of proteins.
View Article and Find Full Text PDFDuring embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated.
View Article and Find Full Text PDFBackground: The polychaete annelid Platynereis dumerilii is an emerging model organism for the study of molecular developmental processes, evolution, neurobiology and marine biology. Annelids belong to the Lophotrochozoa, the so far understudied third major branch of bilaterian animals besides deuterostomes and ecdysozoans. P.
View Article and Find Full Text PDFOne purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments.
View Article and Find Full Text PDFIn the major animal model species like mouse, fish or fly, detailed spatial information on gene expression over time can be acquired through whole mount in situ hybridization experiments. In these species, expression patterns of many genes have been studied and data has been integrated into dedicated model organism databases like ZFIN for zebrafish, MEPD for medaka, BDGP for Drosophila or GXD for mouse. However, a central repository that allows users to query and compare gene expression patterns across different species has not yet been established.
View Article and Find Full Text PDFBackground: Development of the vertebrate head depends on the multipotency and migratory behavior of neural crest derivatives. This cell population is considered a vertebrate innovation and, accordingly, chordate ancestors lacked neural crest counterparts. The identification of neural crest specification genes expressed in the neural plate of basal chordates, in addition to the discovery of pigmented migratory cells in ascidians, has challenged this hypothesis.
View Article and Find Full Text PDFWe describe the creation process of the Minimum Information Specification for In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE). Modeled after the existing minimum information specification for microarray data, we created a new specification for gene expression localization experiments, initially to facilitate data sharing within a consortium. After successful use within the consortium, the specification was circulated to members of the wider biomedical research community for comment and refinement.
View Article and Find Full Text PDFThe Medaka Expression Pattern Database (MEPD) is a database for gene expression patterns determined by in situ hybridization in the small freshwater fish medaka (Oryzias latipes). Data have been collected from various research groups and MEPD is developing into a central expression pattern depository within the medaka community. Gene expression patterns are described by images and terms of a detailed medaka anatomy ontology of over 4000 terms, which we have developed for this purpose and submitted to Open Biological Ontologies.
View Article and Find Full Text PDFGene expression profiling is an important component of functional genomics. We present a time and cost efficient high-throughput whole-mount in situ technique to perform a large-scale gene expression analysis in medaka fish (Oryzias latipes) embryos. Medaka is a model system ideally suited for the study of molecular genetics of vertebrate development.
View Article and Find Full Text PDFThe systematic assignment of gene function to a sequenced genome is one of the outstanding challenges in the post-genomic era. Large-scale systematic mutagenesis screens are important tools for reaching this goal. Here we describe GSD, a software package that allows storage and integration of data from genetic screens.
View Article and Find Full Text PDFA gonad is formed from germ cells and somatic mesodermal cells through their interactions. Its development is coupled with the determination and differentiation of the sex and sex-associated traits. We carried out a large-scale screening of Medaka mutants in which gonadal development is affected.
View Article and Find Full Text PDFThe development of germ cells has been intensively studied in Medaka (Oryzias latipes). We have undertaken a large-scale screen to identify mutations affecting the development of primordial germ cells (PGCs) in Medaka. Embryos derived from mutagenized founder fish were screened for an abnormal distribution or number of PGCs at embryonic stage 27 by RNA in situ hybridization for the Medaka vasa homologue (olvas).
View Article and Find Full Text PDFWe report here mutations affecting various aspects of liver development and function identified by multiple assays in a systematic mutagenesis screen in Medaka. The 22 identified recessive mutations assigned to 19 complementation groups fell into five phenotypic groups. Group 1, showing defective liver morphogenesis, comprises mutations in four genes, which may be involved in the regulation of growth or patterning of the gut endoderm.
View Article and Find Full Text PDFThe thymus is an organ for T lymphocyte maturation and is indispensable for the establishment of a highly developed immune system in vertebrates. In order to genetically dissect thymus organogenesis, we carried out a large-scale mutagenesis screening for Medaka mutations affecting recombination activating gene 1 (rag1) expression in the developing thymus. We identified 24 mutations, defining at least 13 genes, which led to a marked reduction of rag1 expression in the thymus.
View Article and Find Full Text PDFWe performed a systematic screen for mutations affecting the trajectory of axons visualized by immunohistochemical staining of Medaka embryos with anti-acetylated tubulin antibody. Among the mutations identified, yanagi (yan) and kazura (kaz) mutations caused specific defects in projection of the posterior lateral line (PLL) nerve. In yan and kaz mutant embryos, the PLL nerve main bundle was misrouted ventrally and dorsally or anteriorly.
View Article and Find Full Text PDFWe screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum.
View Article and Find Full Text PDFIn a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth.
View Article and Find Full Text PDFThe forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes.
View Article and Find Full Text PDFThe metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries.
View Article and Find Full Text PDFA large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair.
View Article and Find Full Text PDFThe Medaka Expression Pattern Database (MEPD) stores and integrates information of gene expression during embryonic development of the small freshwater fish Medaka (Oryzias latipes). Expression patterns of genes identified by ESTs are documented by images and by descriptions through parameters such as staining intensity, category and comments and through a comprehensive, hierarchically organized dictionary of anatomical terms. Sequences of the ESTs are available and searchable through BLAST.
View Article and Find Full Text PDF