Publications by authors named "Thorsten Heinekamp"

Introduction: Influenza-associated pulmonary aspergillosis is associated with high mortality rates and limited treatment options. The current standard practice involves treating each pathogen separately. However, the use of antifungal drugs can lead to serious side effects, and the presence of triazole-resistant strains can complicate antifungal therapy.

View Article and Find Full Text PDF

Gliotoxin (GT), a secondary metabolite and virulence factor of the fungal pathogen Aspergillus fumigatus, suppresses innate immunity and supports the suppression of host immune responses. Recently, we revealed that GT blocks the formation of the chemotactic lipid mediator leukotriene (LT)B in activated human neutrophils and monocytes, and in rodents in vivo, by directly inhibiting LTA hydrolase. Here, we elucidated the impact of GT on LTB biosynthesis and the entire lipid mediator networks in human M1- and M2-like monocyte-derived macrophages (MDMs) and in human tissue-resident alveolar macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus fumigatus causes the infection known as aspergillosis and uses asexual spores to infect hosts, but little is known about how it evades the immune system.
  • In this study, researchers analyzed the conidial surface proteins of A. fumigatus and compared them to two non-pathogenic species, discovering 62 proteins unique to A. fumigatus.
  • Testing null mutants for 42 genes revealed that deleting 33 of these genes affected the fungus's ability to resist immune responses, particularly highlighting a gene that influences the proinflammatory cytokine IL-1β, which is crucial for infection in a mouse model.
View Article and Find Full Text PDF

Seasonal influenza A virus (IAV) infections still pose a major burden for public health worldwide. Severe disease progression or even death is often related to superinfections of the virus and a secondary bacterial pathogen. However, fungi, especially Aspergillus fumigatus, are also frequently diagnosed during IAV infection.

View Article and Find Full Text PDF

, an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores (conidia) for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of , two closely related non-pathogenic species, and , and the cryptic pathogen . After identifying 62 proteins uniquely expressed on the conidial surface, we assessed null mutants for 42 genes encoding conidial proteins.

View Article and Find Full Text PDF

, an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores or conidia for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of , two closely related non-pathogenic species, and , and the cryptic pathogen . After identifying 62 proteins uniquely expressed on the conidial surface, we deleted 42 genes encoding conidial proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus fumigatus is an opportunistic pathogen that often infects the lungs of cystic fibrosis patients and poses a significant risk to immunocompromised individuals, leading to high rates of infectious disease-related deaths.
  • Researchers developed 252 strain-specific, genome-scale metabolic models of A. fumigatus, revealing that over 23% of its metabolic reactions vary between strains, particularly in amino acid, nucleotide, and nitrogen metabolism.
  • Analysis of sputum from cystic fibrosis patients indicates that A. fumigatus influences the lung microbiome, promoting conditions favorable for its growth, which could guide future drug development or microbiome interventions targeting this fungus.
View Article and Find Full Text PDF

The decision whether endosomes enter the degradative or recycling pathway in mammalian cells is of fundamental importance for pathogen killing, and its malfunctioning has pathological consequences. We discovered that human p11 is a critical factor for this decision. The HscA protein present on the conidial surface of the human-pathogenic fungus Aspergillus fumigatus anchors p11 on conidia-containing phagosomes (PSs), excludes the PS maturation mediator Rab7, and triggers binding of exocytosis mediators Rab11 and Sec15.

View Article and Find Full Text PDF

Alveolar macrophages belong to the first line of defense against inhaled conidia of the human-pathogenic fungus Aspergillus fumigatus. In lung alveoli, they contribute to phagocytosis and elimination of conidia. As a counterdefense, conidia have a gray-green pigment that enables them to survive in phagosomes of macrophages for some time.

View Article and Find Full Text PDF

Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination.

View Article and Find Full Text PDF
Article Synopsis
  • The host defense against infections includes both resistance to pathogens and resilience that helps the host tolerate infection and recover from damage.
  • In Drosophila, the Toll signaling pathway is critical for combating fungal infections, influencing the secretion of antimicrobial peptides like Bomanins, which play a role in defense beyond mere resistance.
  • The study shows that specific mutants susceptible to Aspergillus mycotoxins can be rescued by overexpressing certain Bomanins, indicating that these peptides enhance the flies' ability to withstand microbial toxins and support recovery.
View Article and Find Full Text PDF

Biological networks are characterized by diverse interactions and dynamics in time and space. Many regulatory modules operate in parallel and are interconnected with each other. Some pathways are functionally known and annotated accordingly, e.

View Article and Find Full Text PDF

Aspergillus fumigatus is an important fungal pathogen that causes allergic reactions but also life-threatening infections. One of the most abundant A. fumigatus proteins is Asp f3.

View Article and Find Full Text PDF

, commonly found on food matrices, is a mycotoxigenic species able to produce a neurotoxin called verrucosidin. This methylated α-pyrone polyketide inhibits oxidative phosphorylation in mitochondria and thereby causes neurological diseases. Despite the importance of verrucosidin as a toxin, its biosynthetic genes have not been characterized yet.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is a key molecule in cellular bioenergetics and signalling. Various bacterial pathogens release NADase enzymes into the host cell that deplete the host's NAD pool, thereby causing rapid cell death. Here, we report the identification of NADases on the surface of fungi such as the pathogen Aspergillus fumigatus and the saprophyte Neurospora crassa.

View Article and Find Full Text PDF

Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients.

View Article and Find Full Text PDF

Gliotoxin and related epidithiodiketopiperazines (ETP) from diverse fungi feature highly functionalized hydroindole scaffolds with an array of medicinally and ecologically relevant activities. Mutation analysis, heterologous reconstitution, and biotransformation experiments revealed that a cytochrome P450 monooxygenase (GliF) from the human-pathogenic fungus Aspergillus fumigatus plays a key role in the formation of the complex heterocycle. In vitro assays using a biosynthetic precursor from a blocked mutant showed that GliF is specific to ETPs and catalyzes an unprecedented heterocyclization reaction that cannot be emulated with current synthetic methods.

View Article and Find Full Text PDF

Lipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid-raft microdomains are essential components of phagolysosomal membranes of macrophages and depend on flotillins. Genetic deletion of flotillins demonstrates that the assembly of both major defense complexes vATPase and NADPH oxidase requires membrane microdomains.

View Article and Find Full Text PDF

In order for eukaryotes to efficiently detect and respond to environmental stimuli, a myriad of protein signaling pathways are utilized. An example of highly conserved signaling pathways in eukaryotes are the mitogen-activated protein kinase (MAPK) pathways. In fungi, MAPK pathways have been shown to regulate a diverse array of biological processes, such as asexual and sexual development, stress responses and the production of secondary metabolites (SMs).

View Article and Find Full Text PDF

We describe the synthesis of hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PmPEGMA) and hydrophobic poly(methyl methacrylate) (PMMA) caspofungin conjugates by a post-polymerization modification of copolymers containing 10 mol % pentafluorophenyl methacrylate (PFPMA), which were obtained via reversible addition-fragmentation chain transfer copolymerization. The coupling of the clinically used antifungal caspofungin was confirmed and quantified in detail by a combination of H-, F- and diffusion-ordered NMR spectroscopy, UV-vis spectroscopy, and size exclusion chromatography. The trifunctional amine-containing antifungal was attached via several amide bonds to the hydrophobic PMMA, but sterical hindrance induced by the mPEGMA side chains prohibited intramolecular double functionalization.

View Article and Find Full Text PDF

For the screening purposes urine is an especially attractive biofluid, since it offers easy and noninvasive sample collection and provides a snapshot of the whole metabolic status of the organism, which may change under different pathological conditions. Raman spectroscopy (RS) has the potential to monitor these changes and utilize them for disease diagnostics. The current study utilizes mouse models aiming to compare the feasibility of the urine based RS combined with chemometrics for diagnosing kidney diseases directly influencing urine composition and respiratory tract diseases having no direct connection to urine formation.

View Article and Find Full Text PDF

Aspergillus fumigatus is a human pathogen and the principal etiologic agent of invasive and chronic aspergillosis leading to several hundreds of thousands of deaths every year. Very few antifungals are available to treat infections caused by A. fumigatus, and resistance is developing to those we have.

View Article and Find Full Text PDF

The pathogenic fungus is able to adapt to extremely variable environmental conditions. The genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs.

View Article and Find Full Text PDF

The epidithiodioxopiperazine gliotoxin is a virulence factor of Aspergillus fumigatus, the most important airborne fungal pathogen of humans. Gliotoxin suppresses innate immunity in invasive aspergillosis, particularly by compromising neutrophils, but the underlying molecular mechanisms remain elusive. Neutrophils are the first responders among innate immune cells recruited to sites of infection by the chemoattractant leukotriene (LT)B that is biosynthesized by 5-lipoxygenase and LTA hydrolase (LTAH).

View Article and Find Full Text PDF