Publications by authors named "Thorsten Burmester"

Article Synopsis
  • The genomes of lungfishes, particularly the recently sequenced African and South American species, provide insights into the evolutionary transition from fish to tetrapods during the Devonian period.
  • The Lepidosiren genome is the largest animal genome sequenced to date, about 91 Gb, and features significant genome expansion due to active transposable elements, growing rapidly over the past 100 million years.
  • The study finds that while lungfish chromosomes retain features of their ancient tetrapod ancestors, the loss of limb-like appendages in some species is likely linked to the deletion of specific enhancers associated with limb development.
View Article and Find Full Text PDF

Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis.

View Article and Find Full Text PDF

Lipids make up more than half of the human brain's dry weight, yet the composition and function of the brain lipidome is not well characterized. Lipids not only provide the structural basis of cell membranes, but also take part in a wide variety of biochemical processes. In neurodegenerative diseases, lipids can facilitate neuroprotection and serve as diagnostic biomarkers.

View Article and Find Full Text PDF

While foraging, marine mammals undertake repetitive diving bouts. When the animal surfaces, reperfusion makes oxygen readily available for the electron transport chain, which leads to increased production of reactive oxygen species and risk of oxidative damage. In blood and several tissues, such as heart, lung, muscle and kidney, marine mammals generally exhibit an elevated antioxidant defence.

View Article and Find Full Text PDF

Background: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance.

View Article and Find Full Text PDF

The mammalian brain is characterized by high energy expenditure and small energy reserves, making it dependent on continuous vascular oxygen and nutritional supply. The brain is therefore extremely vulnerable to hypoxia. While neurons of most terrestrial mammals suffer from irreversible damage after only short periods of hypoxia, neurons of the deep-diving hooded seal () show a remarkable hypoxia-tolerance.

View Article and Find Full Text PDF

The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes.

View Article and Find Full Text PDF

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish.

View Article and Find Full Text PDF

While the brain of most mammals suffers from irreversible damage after only short periods of low oxygen levels (hypoxia), marine mammals are excellent breath-hold divers that have adapted to hypoxia. In addition to physiological adaptations, such as large oxygen storing capacity and strict oxygen economy during diving, the neurons of the deep-diving hooded seal (Cystophora cristata) have an intrinsic tolerance to hypoxia. We aim to understand the molecular basis of this neuronal hypoxia tolerance.

View Article and Find Full Text PDF

Globins are small heme-proteins that reversibly bind oxygen. Their most prominent roles in vertebrates are the transport and storage of O for oxidative energy metabolism, but recent research has suggested alternative, non-respiratory globin functions. In the species-rich and ecologically highly diverse taxon of arthropods, the copper-containing hemocyanin is considered the main respiratory protein.

View Article and Find Full Text PDF

Characterizing the adhesive dynamics of Plasmodium falciparum infected erythrocytes (IEs) to different endothelial cell receptors (ECRs) in flow is a big challenge considering available methods. This study investigated the adhesive dynamics of IEs to five ECRs (CD36, ICAM-1, P-selectin, CD9, CSA) using simulations of in vivo-like flow and febrile conditions. To characterize the interactions between ECRs and knobby and knobless IEs of two laboratory-adapted P.

View Article and Find Full Text PDF

The brain of diving mammals is repeatedly exposed to low oxygen conditions (hypoxia) that would have caused severe damage to most terrestrial mammals. Some whales may dive for >2 h with their brain remaining active. Many of the physiological adaptations of whales to diving have been investigated, but little is known about the molecular mechanisms that enable their brain to survive sometimes prolonged periods of hypoxia.

View Article and Find Full Text PDF

It is known that the West African lungfish (Protopterus annectens) harbours multiple myoglobin (Mb) genes that are differentially expressed in various tissues and that the Mbs differ in their abilities to confer tolerance towards hypoxia. Here, we show that other lungfish species (Protopterus dolloi, Protopterus aethiopicus and Lepidosiren paradoxa) display a similar diversity of Mb genes and have orthologous Mb genes. To investigate the functional diversification of these genes, we studied the structures, O binding properties and nitrite reductase enzymatic activities of recombinantly expressed P.

View Article and Find Full Text PDF

Freezing, dehydration, salinity variations, hypoxia or anoxia are some of the environmental constraints that many organisms must frequently endure. Organisms adapted to these stressors often reduce their metabolic rates to maximize their chances of survival. However, upon recovery of environmental conditions and basal metabolic rates, cells are affected by an oxidative burst that, if uncontrolled, leads to (oxidative) cell damage and eventually death.

View Article and Find Full Text PDF

Globins are a classical model system for the studies of protein evolution and function. Recent studies have shown that - besides the well-known haemoglobin and myoglobin - additional globin-types occur in vertebrates that serve different functions. Globin E (GbE) was originally identified as an eye-specific protein of birds that is distantly related to myoglobin.

View Article and Find Full Text PDF

Background: Hemocyanin transports O in the hemolymph of many arthropod species. Such respiratory proteins have long been considered unnecessary in Myriapoda. As a result, the presence of hemocyanin in Myriapoda has long been overlooked.

View Article and Find Full Text PDF

Agnathans have a globin repertoire that markedly differs from that of jawed (gnathostome) vertebrates. The sea lamprey (Petromyzon marinus) harbors at least 18 hemoglobin, two myoglobin, two globin X, and one cytoglobin genes. However, agnathan hemoglobins and myoglobins are not orthologous to their cognates in jawed vertebrates.

View Article and Find Full Text PDF

The ability of the parasite Plasmodium falciparum to evade the immune system and be sequestered within human small blood vessels is responsible for severe forms of malaria. The sequestration depends on the interaction between human endothelial receptors and P. falciparum erythrocyte membrane protein 1 (PfEMP1) exposed on the surface of the infected erythrocytes (IEs).

View Article and Find Full Text PDF

In contrast to long-held assumptions, the gene repertoire of most insects includes hemoglobins. Analyses of the genome of the fruitfly Drosophila melanogaster identified three distinct hemoglobin genes (glob1, glob2, and glob3). While glob1 is predominantly associated with the tracheal system and fat body, glob2 and glob3 are almost exclusively expressed in the testis.

View Article and Find Full Text PDF

Background: Contaminations from various exogenous sources are a common problem in next-generation sequencing. Another possible source of contaminating DNA are endogenous parasites. On the one hand, undiscovered contaminations of animal sequence assemblies may lead to erroneous interpretation of data; on the other hand, when identified, parasite-derived sequences may provide a valuable source of information.

View Article and Find Full Text PDF

The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a respiratory protein that is almost exclusively expressed in the vertebrate nervous system. Despite many years of research, the exact function and even the expression sites of Ngb are still a matter of debate. However, to investigate hypotheses surrounding the potential roles of Ngb, a detailed knowledge of its major and minor expression sites is indispensable.

View Article and Find Full Text PDF

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M.

View Article and Find Full Text PDF

Myoglobin is a respiratory protein that serves as a model system in a variety of biological fields. Its main function is to deliver and store O in the heart and skeletal muscles, but myoglobin is also instrumental in homeostasis of nitric oxide (NO) and detoxification of reactive oxygen species (ROS). Almost every vertebrate harbors a single myoglobin gene; only some cyprinid fishes have two recently duplicated myoglobin genes.

View Article and Find Full Text PDF