We describe synthesis and testing of a novel type of dye-modified nucleotides which we call macromolecular nucleotides (m-Nucs). Macromolecular nucleotides comprise a nucleotide moiety, a macromolecular linear linker, and a large macromolecular ligand carrying multiple fluorescent dyes. With incorporation of the nucleotide moiety into the growing nucleic acid strand during enzymatic synthesis, the macromolecular ligand together with the coupled dyes is bound to the nucleic acid.
View Article and Find Full Text PDFA variety of molecules in human blood have been implicated in the inhibition of HIV-1. However, it remained elusive which circulating natural compounds are most effective in controlling viral replication in vivo. To identify natural HIV-1 inhibitors we screened a comprehensive peptide library generated from human hemofiltrate.
View Article and Find Full Text PDFCarbohydrate-protein interactions are frequently characterized by dissociation constants in the microM to mM range. This is normally associated with fast dissociation rates of the corresponding complexes, in turn leading to fast exchange on the nuclear magnetic resonance (NMR) chemical shift time scale and on the NMR relaxation time scale. Therefore, NMR experiments that take advantage of fast exchange are well suited to study carbohydrate-protein interactions.
View Article and Find Full Text PDFThe biosynthesis of human blood group B antigens is accomplished by a highly specific galactosyltransferase (GTB). On the basis of NMR experiments, we propose a "molecular tweezers mechanism" that accounts for the exquisite stereoselectivity of donor substrate selection. Transferred NOE experiments for the first time reveal the bioactive conformation of the donor substrate UDP-galactose (UDP-Gal) and of its enzymatically inactive analogue, UDP-glucose (UDP-Glc).
View Article and Find Full Text PDFSaturation transfer difference NMR experiments on human blood group B alpha-(1,3)-galactosyltransferase (GTB) for the first time provide a comprehensive set of binding epitopes of donor substrate analogs in relation to the natural donor UDP-Gal. This study revealed that the enzyme binds several UDP-activated sugars, including UDP-Glc, UDP-GlcNAc, and UDP-GalNAc. In all cases, UDP is the dominant binding epitope.
View Article and Find Full Text PDFThe STD NMR technique has originally been described as a tool for screening large compound libraries to identify the lead compounds that are specific to target proteins of interest. The application of this technique in the qualitative epitope mapping of ligands weakly binding to proteins, virus capsid shells, and nucleic acids has also been described. Here we describe the application of the STD NMR intensity-restrained CORCEMA optimization (SICO) procedure for refining the bound conformation of UDP-galactose in galactosyltransferase complex using STD NMR intensities recorded at 500 MHz as the experimental constraints.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2001
Saturation transfer difference (STD) NMR experiments reveal the binding epitopes of UDP-Gal and UDP-Glc bound to the glycosyltransferase β4Gal-T1. Whereas the enzyme recognizes the galactose residue in UDP-Gal, it does not make any close contacts with the glucose residue in UDP-Glc. This observation explains why β4Gal-T1 binds to UDP-Glc but is unable to transfer glucose to an acceptor substrate.
View Article and Find Full Text PDF