Publications by authors named "Thors L"

Abuse of the highly toxic compound fentanyl and its analogues is increasing, raising serious public health concerns due to their potency and availability. Therefore, there is a need for decontamination methodologies to safely remove fentanyl to avoid harmful exposure. In this study, the efficacy of commercial and in-house synthesized decontamination agents (Dahlgren Decon, RSDL (Reactive Skin Decontamination Lotion), FAST-ACT (First applied sorbent treatment against chemical threats), GDS2000, alldecont MED, bleach, Domestos Spray Bleach, Effekt Klor, MgO, TiO-nanodiamond, and CeO) were evaluated for the degradation of fentanyl and carfentanil under controlled laboratory conditions and on wooden floor surfaces.

View Article and Find Full Text PDF

Following inhalation exposure to organophosphorus nerve agents, symptoms rapidly develop and severe respiratory symptoms, such as bronchorrhea and bronchoconstriction are the leading causes of lethality. Nerve agent-induced lung injury is little investigated and the standard treatment for symptomatic relief targets the enzyme acetylcholinesterase and muscarinic acetylcholine and GABAergic receptors. In the present study, cellular responses in lung tissue during the acute (40 min) and extended phase (24 h) following severe exposure to the nerve agent VX have been investigated using an ex vivo rat precision-cut lung slice model including electrostimulation to induce a cholinergic response.

View Article and Find Full Text PDF

In a chemical mass casualty incident requiring skin decontamination, dry removal using absorbent materials may be beneficial to enable immediate decontamination. The efficacy of absorbent materials has therefore been evaluated, alone or procedures including both dry and wet decontamination, following skin exposure to two low volatile toxic chemicals using an in vitro human skin penetration model. Additionally, removal using active carbon wipes was evaluated with or without the Dahlgren Decon solution.

View Article and Find Full Text PDF

The carbamate pyridostigmine bromide (PB) is the only fielded pharmacological prophylaxis for military use against nerve agents. Previous studies have shown differences in the PB-pretreatment efficacy for various nerve agents and in the influence of post-exposure treatment with common antidotes. In the present study, the aim was to evaluate the possibility of using an rat precision-cut lung slice model to determine the impact of PB pretreatment on VX-induced bronchoconstriction.

View Article and Find Full Text PDF

In mass casualty incidents including hazardous chemical skin exposure, decontamination is the primary intervention to avoid systemic uptake of the toxic compound. The protocol needs to be both simple and efficient to enable a rapid response and avoid delay of patient management. In the present study, decontamination strategies included in the initial operational response were evaluated following human skin exposure in vitro to four different contaminants.

View Article and Find Full Text PDF

Exposure to highly toxic organophosphorus compounds causes inhibition of the enzyme acetylcholinesterase resulting in a cholinergic toxidrome and innervation of receptors in the neuromuscular junction may cause life-threatening respiratory effects. The involvement of several receptor systems was therefore examined for their impact on bronchoconstriction using an ex vivo rat precision-cut lung slice (PCLS) model. The ability to recover airways with therapeutics following nerve agent exposure was determined by quantitative analyses of muscle contraction.

View Article and Find Full Text PDF

Skin decontamination in cold weather temperatures might be challenging due to the aggravating circumstances. However, no information is available on the efficacy of commonly used procedures in winter conditions. Therefore, the efficacy of the reactive skin decontamination lotion (RSDL) and soapy water decontamination following skin exposure to the nerve agent VX was evaluated at three ambient air temperatures (-5°C, -15°C and room temperature).

View Article and Find Full Text PDF

Nerve agents are highly toxic organophosphorus compounds that inhibit acetylcholinesterase resulting in rapid accumulation of the neurotransmitter acetylcholine (ACh) causing a cholinergic syndrome including respiratory failure. In the present study, respiratory responses and antimuscarinic treatment efficacy was evaluated ex vivo using rat precision-cut lung slices (PCLS) exposed to the nerve agent VX. The respiratory effects were evaluated either by adding exogenous ACh directly to the culture medium or by applying electric-field stimulation (EFS) to the PCLS to achieve a release of endogenous ACh from neurons in the lung tissue.

View Article and Find Full Text PDF

Aim Of The Study: Following percutaneous exposure to the nerve agent VX, the remaining intact agent within the skin after decontamination is of great concern. Consequently, this leads to prolonged agent release to the blood circulation resulting in sustained intoxication, which may complicate the medical management. The decontamination procedure used should therefore possess the ability for agent removal both on and within the skin.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown promising properties for removal of chemical warfare agents, in particular for material decontamination and functionalized fabrics. The MOF-properties could also be beneficial for skin decontamination, especially when exposed to highly toxic and low volatile nerve agents. In such exposures, efficient decontamination is crucial for adequate medical management.

View Article and Find Full Text PDF

Unintentional exposure to potent synthetic opioids during law enforcement seizures and rescue operations can potentially result in incapacitating effects or life-threatening respiratory depression. The hazard comes mainly from inhalation exposure, however, the skin contact risk should be considered. In the present study, the skin penetration of fentanyl and the efficacy of different decontamination protocols were evaluated by applying two forms of fentanyl on dermatomed human skin mounted in a diffusion cell.

View Article and Find Full Text PDF

Early initiated decontamination is demonstrated to be crucial to avoid systemic effects of highly toxic and low volatile agents exposed on the skin. Skin decontamination can be performed by simple procedures, such as washing with soap and water, or by using advanced decontamination products containing absorption and agent degradation properties. Reactive Skin Decontamination Lotion (RSDL) has demonstrated high efficacy to remove nerve agents from the skin.

View Article and Find Full Text PDF

Following exposure to toxic chemicals, skin uptake is a potential route of intoxication. Therefore, efficient methods for rapid skin decontamination to mitigate systemic effects are of utmost importance. In operational guidelines, skin decontamination is recommended to be performed by dry absorption and washing with water or soapy water.

View Article and Find Full Text PDF

The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.

View Article and Find Full Text PDF

Skin contamination with radionuclides may cause local radiation damage, but also systemic distribution if the nuclides penetrate the epidermal membrane. Detailed information of the skin absorption of radionuclides is of importance for e.g.

View Article and Find Full Text PDF

Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX.

View Article and Find Full Text PDF

A flow-through diffusion cell was validated for in vitro human epidermal penetration studies of organophosphorus compounds (OPCs) applied by infinite dosing. By testing OPCs with similar molecular weight but different physicochemical properties, it was shown that hydrophilic and lipophilic properties are major determinants for the penetration rate. Lipophilic OPCs displayed maximum cumulative penetration in the 20-75% agent concentration range whereas the hydrophilic OPCs displayed maximum cumulative penetration at 10 or 20% agent concentration.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of the endogenous cannabinoid (CB) receptor ligand anandamide. Here we have investigated whether the expression levels of FAAH and CB1 receptors influence the prognostic value of markers of angiogenesis in prostate cancer. Data from a cohort of 419 patients who were diagnosed with prostate cancer at transurethral resection for lower urinary tract symptoms, of whom approximately 2/3 had been followed by expectancy, were used.

View Article and Find Full Text PDF

Background: Recent data have indicated that there may be a dysregulation of endocannabinoid metabolism in cancer. Here we have investigated the expression of the endocannabinoid metabolising enzyme fatty acid amide hydrolase (FAAH) in a well characterised tissue microarray from patients diagnosed with prostate cancer at transurethral resection for voiding problems.

Methodology/principal Findings: FAAH immunoreactivity (FAAH-IR) was assessed in formalin-fixed paraffin-embedded non-malignant and tumour cores from 412 patients with prostate cancer.

View Article and Find Full Text PDF

Background And Purpose: Inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the metabolism of the endogenous cannabinoid (CB) receptor ligand anandamide (AEA), are effective in a number of animal models of pain. Here, we investigated a series of isoflavones with respect to their abilities to inhibit FAAH.

Experimental Approach: In vitro assays of FAAH activity and affinity for CB receptors were used to characterize key compounds.

View Article and Find Full Text PDF

The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are metabolised by cells by hydrolysis to arachidonic acid followed by esterification into phospholipids. Here, we report that nitric oxide (NO) donors significantly increase the amount of tritium accumulated in the cell membranes of RBL2H3 rat basophilic cells, 3T3-L1 mouse fibroblast cells and b.End5 mouse brain endothelioma cells following incubation of the intact cells with AEA labelled in the arachidonate part of the molecule.

View Article and Find Full Text PDF

Background And Purpose: Recent studies have demonstrated that the naturally occurring isoflavone compounds genistein and daidzein inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the low micromolar concentration range. The purpose of the present study was to determine whether this property is shared by flavonoids.

Experimental Approach: The hydrolysis of anandamide in homogenates and intact cells was measured using the substrate labelled in the ethanolamine part of the molecule.

View Article and Find Full Text PDF

Background And Purpose: Genistein, a tyrosine kinase inhibitor used to block caveolae dependent endocytosis, reduces the cellular uptake of anandamide in RBL2H3 basophilic leukaemia cells. However, genistein is also a competitive inhibitor of fatty acid amide hydrolase, the enzyme responsible for anandamide hydrolysis. Here we have investigated whether inhibition of fatty acid amide hydrolase rather than inhibition of endocytosis is the primary determinant of genistein actions upon anandamide uptake.

View Article and Find Full Text PDF

Background And Purpose: The cellular uptake of anandamide is reduced by inhibitors of fatty acid amide hydrolase (FAAH) and by agents disrupting endocytotic mechanisms. However, it is not clear if these events occur over the same time frame and if they occur to the same extent in different cells. We have therefore investigated the effects of such compounds in three cell lines of different origins using different assay incubation times and temperatures.

View Article and Find Full Text PDF

Background And Purpose: The temperature dependency of anandamide uptake into cells implies an active mechanism but this is still a matter of considerable debate. We have therefore re-examined the temperature-sensitive uptake of anandamide in ND7/23 mouse neuroblastoma x rat dorsal root ganglion neurone hybrid cells and RBL2H3 rat basophilic leukaemia cells.

Experimental Approach: Cellular uptake of [(3)H] anandamide was measured in the presence of bovine serum albumin at different incubation temperatures and times.

View Article and Find Full Text PDF