Traumatized women are more likely than traumatized men to develop post-traumatic stress disorder (PTSD). Still, the inclusion of females in animal models of PTSD has largely been avoided, likely due to the variable hormone profile of female rodents. Because a valid animal model of PTSD that incorporates females is still needed, we examined the influence of estrous stage and ovarian hormones on the female rat response to a predator-based psychosocial stress model of PTSD.
View Article and Find Full Text PDFPeople who are exposed to life-threatening trauma are at risk of developing posttraumatic stress disorder (PTSD). In addition to psychological manifestations, PTSD is associated with an increased risk of myocardial infarction, arrhythmias, hypertension, and other cardiovascular problems. We previously reported that rats exposed to a predator-based model of PTSD develop myocardial hypersensitivity to ischemic injury.
View Article and Find Full Text PDFThere is a need to identify new therapeutic targets for the treatment of cocaine addiction due to the rise in cocaine abuse and deaths due to cocaine overdose. Regulator of G protein signaling (RGS) proteins such as RGS2 and RGS4 are widely distributed in brain regions that play a role in drug reward. Importantly, RGS2 and RGS4 negatively regulate G-protein coupled receptor signaling pathways of monoaminergic neurotransmitters that play a role in the rewarding effects of cocaine by enhancing the rate of hydrolysis of Gα-bound guanine nucleotide triphosphate.
View Article and Find Full Text PDFBackground: We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury.
View Article and Find Full Text PDF