Publications by authors named "Thornber J"

Purpose: Enhanced recovery after surgery (ERAS) pathways have been shown to improve surgical outcomes and patient satisfaction. The aim of the study was to assess whether the implementation of a perioperative enhanced recovery after percutaneous endoscopic gastrostomy (ERaPEG) pathway based on ERAS principles was safe, satisfactory to parents and improved outcomes.

Methods: Following a quality improvement project, a multimodal ERaPEG pathway was introduced as standard practice within the department and children undergoing elective same-day admission percutaneous endoscopic gastrostomy (PEG) at a single UK tertiary center were prospectively enrolled.

View Article and Find Full Text PDF

The author summarizes the research contributions to photosynthesis made by him, his graduate and postdoctoral students, visiting scientists and by his collaboration with other photosynthesis workers during 1964-1994. The development of isolation procedures and biochemical/biophysical characterization of antenna pigment-proteins and photochemical reaction centers are described together with the author's education and experiences as a scientific researcher. Some anecdotes hopefully add insight into what it was like to be in this area of science during the period.

View Article and Find Full Text PDF

Transcription and translation of Lhc (cab) genes have been compared in the chlorina f2 mutant of barley (Hordeum vulgare) and its wild type to study the effect of chlorophyll b's absence on the regulation of assembly of the light-harvesting complexes (LHC). All tested genes were transcribed and the amount of their respective mRNAs increased rhythmically upon illumination of etiolated mutant plants. The synthesis of individual LHC apoproteins also had a rhythmic pattern when total leaf protein extracts were examined, whereas they increased gradually in the thylakoid.

View Article and Find Full Text PDF

The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII.

View Article and Find Full Text PDF

Photosystem I (PSI) holocomplexes were fractionated to study the organization of the light-harvesting complex I (LHC I) pigment-proteins in barley (Hordeum vulgare) plastids. LHC Ia and LHC Ib can be isolated as oligomeric, presumably trimeric, pigment-protein complexes. The LHC Ia oligomeric complex contains both the 24- and the 21.

View Article and Find Full Text PDF

The light-induced assembly of light-harvesting complex (LHC) II has been followed during the biogenesis of the plastid. Seedlings grown in intermittent light (IML) accumulate only small amounts of chlorophyll b. The minor LHC II apoproteins are present; however, the apoprotein levels of the major LHC II complex, LHC IIb, are severely depressed after exposure to IML.

View Article and Find Full Text PDF

Two complexes, the reaction center light-harvesting complex 1 (RC-LH1) and the B820 subunit of the LH1, have been isolated and characterized from the purple-sulfur photosynthetic bacterium Chromatium purpuratum. The RC-LH1 consists of the B870 antenna and a P-870 RC with an associated tetraheme cytochrome. This complex can be further fractionated to yield the B820 subunit of the LH1.

View Article and Find Full Text PDF

The purification and characterization of the peripheral antenna and the preliminary characterization of a carotenoid-protein complex from the purple-sulfur bacterium Chromatium purpuratum are described. The peripheral antenna of C. purpuratum is unusual among purple bacteria in that it can be resolved by SDS-PAGE into six subunits, the largest number observed thus far for a spectrally pure antenna complex.

View Article and Find Full Text PDF

The caroteno-chlorophyll-protein, LHC IIc, is a relatively minor component of the PS II antenna. Isolated LHC IIc contains a major protein of 28 kDa along with a 26 kDa subunit in lower abundance. Previously, it was not known if the 26 kDa protein was closely related to the 28 kDa LHC IIc protein or if it was a comigrating LHC IIb contaminating subunit.

View Article and Find Full Text PDF

The light-harvesting complex (LHC) Ib pigment-proteins form the major component of the LHC I complex in higher plants. They comprise chlorophylls a and b, xanthophylls, and at least two polypeptide subunits of 21 and 20 kD in barley (Hordeum vulgare). We have identified two cDNA clones, LHC Ib-21 and LHC Ib-20, encoding the 21- and 20-kD LHC Ib apoproteins, respectively.

View Article and Find Full Text PDF

The light-harvesting complex (LHC) of photosystem II is composed of several different pigment-binding apoproteins. We have identified a cDNA clone LHCIIa-1 encoding the 31-kilodalton LHC IIa (CP29, Chl a/b-P1) apoprotein of barley (Hordeum vulgare). Direct protein microsequencing of an internal peptide fragment from the LHC IIa apoprotein has been used to identify unequivocally the cDNA clone as that coding for the LHC IIa apoprotein.

View Article and Find Full Text PDF

The suitability of Deriphat-polyacrylamide gel electrophoresis as a method for separating purple bacterial pigment-protein complexes has been tested. When appropriate non-denaturing detergents are used to solubilize chromatophores, this method provides a rapid, easy and microscale procedure for analyzing the composition of the bacterial photosynthetic apparatus with minimal disruption of individual pigment-proteins. Its usefulness is further illustrated by employing it to test for suitable detergents with which to solubilize purple bacterial chromatophores, and as an assay to study variation in the composition of the photosynthetic unit of bacterial cultures grown under different conditions.

View Article and Find Full Text PDF

The major light-harvesting complex in higher plants is LHC IIb. The LHC IIb of Arabidopsis thaliana contains 2 pigment-binding apoproteins of 28 and 25 kDa. To determine the relationship between them and the LHC IIb gene family members, each protein was purified to homogeneity, subjected to direct protein sequencing, and the sequences compared with those deduced from LHC IIb genes in this organism.

View Article and Find Full Text PDF

The light-harvesting complex (LHC) of barley photosystem II (PS II) was fractionated by Deriphat-polyacrylamide gel electrophoresis into five different pigmented components: one subcomplex (LHC IIb) and four pigment-proteins (LHC IIa, -c, -d, and -e). No loss of chorophyll from the components occurred during fractionation, and violaxanthin is the only photosynthetic pigment that apparently occurs in thylakoids free of association with protein. Each LHC II component has a distinct stoichiometry of neoxanthin, violaxanthin, lutein, chlorophyll a, and chlorophyll b.

View Article and Find Full Text PDF

The 21 kDa apoprotein of LHC IId, a minor light-harvesting antenna component of Photosystem II, has been isolated and subjected to N-terminal protein sequencing. A sequence of 66 residues was obtained which contains regions of considerable homology to both those reported for LHC II and LHC I, but which is obviously distinct from them. The proposed occurrence of an identical 21 kDa LHC subunit in both photosystems I and II is shown to be incorrect.

View Article and Find Full Text PDF

Photosystem I (PSI) in barley consists of at least 11 polypeptides of which three have apparent sizes of 15-19 kDa. Two of these polypeptides (subunits III and IV) are constituents of the core complex (CCI), the third is a component of the light-harvesting complex (LHCI). After fractionation of PSI into its CCI and LHCI components, each of the polypeptides has been isolated and its N-terminal region sequenced.

View Article and Find Full Text PDF

The adaptation of germinating spinach seedlings to yellow and red light was studied and compared with plants grown in white light. Spinach chloroplasts isolated from cotyledons and leaves of yellow and white light-grown plants showed similar membrane structures and compositions, while chloroplasts from plants grown in red light have significant adaptive changes. Based on an equal amount of chlorophyll, these changes include a reduction in the number of photosystem I complexes, an increase of photosystem II antenna size, and an increased ratio of stacked to unstacked membranes in red light-adapted chloroplasts.

View Article and Find Full Text PDF

Three different pigment-binding proteins of the light-harvesting complex (LHC I) of maize photosystem I (PS I) have been isolated. Absorption and fluorescence excitation spectral analyses showed that each pigment-protein can transfer absorbed energy from its carotenoid and/or chlorophyll b components to chlorophyll alpha. Their apoproteins with apparent sizes of 24 (LHC Ia), 21 (LHC Ib), and 17 (LHC Ic) kDa have been purified to homogeneity.

View Article and Find Full Text PDF

Distribution of the major light-harvesting chlorophyll a/b-protein (LHCII) and its mRNA within bundle sheath and mesophyll cells of maize (Zea mays L.) was studied using in situ immunolocalization and hybridization, respectively. In situ hybridization with specific LHCII RNA probes from maize and Lemna gibba definitively shows the presence of high levels of mRNA for LHCII in both bundle sheath cells and mesophyll cells.

View Article and Find Full Text PDF

The photosystem I complex of the green alga Chlamydomonas reinhardtii was isolated and fractionated into its two subcomplex components: the core complex (CC I), which contained the reaction center (P-700) and had four polypeptide subunits, and the light-harvesting complex (LHC I) which contained four polypeptides of about 22, 25, 26 and 27 kDa. The 22-kDa apoprotein was isolated as a chlorophyll a and b binding protein. In the isolated photosystem I holocomplex, about ten copies of the 22-kDa LHC I apoprotein are present for each CC I unit.

View Article and Find Full Text PDF

The light-harvesting complex of photosystem II (LHC II) contains one major (LHC IIb) and at least three minor chlorophyll-protein components. The apoproteins of LHC IIb (LHCP) are encoded by nuclear genes and synthesized in the cytoplasm as a higher molecular weight precursor(s) (pLHCP). Several genes coding for pLHCP have been cloned from various higher plant species.

View Article and Find Full Text PDF