Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years.
View Article and Find Full Text PDFMetal-insulator-metal tunnel junctions (MIM-TJs) can electrically excite surface plasmon polaritons (SPPs) well below the diffraction limit. When inelastically tunneling electrons traverse the tunnel barrier under applied external voltage, a highly confined cavity mode (MIM-SPP) is excited, which further out-couples from the MIM-TJ to photons and single-interface SPPs via multiple pathways. In this work we control the out-coupling pathways of the MIM-SPP mode by engineering the geometry of the MIM-TJ.
View Article and Find Full Text PDFTo avoid crosstalk and suppress leakage currents in resistive random access memories (RRAMs), a resistive switch and a current rectifier (diode) are usually combined in series in a one diode-one resistor (1D-1R) RRAM. However, this complicates the design of next-generation RRAM, increases the footprint of devices and increases the operating voltage as the potential drops over two consecutive junctions. Here, we report a molecular tunnel junction based on molecules that provide an unprecedented dual functionality of diode and variable resistor, resulting in a molecular-scale 1D-1R RRAM with a current rectification ratio of 2.
View Article and Find Full Text PDFSurface plasmon polaritons (SPPs) are viable candidates for integration into on-chip nano-circuitry that allow access to high data bandwidths and low energy consumption. Metal-insulator-metal tunneling junctions (MIM-TJs) have recently been shown to excite and detect SPPs electrically; however, experimentally measured efficiencies and outcoupling mechanisms are not fully understood. It is shown that the MIM-TJ cavity SPP mode (MIM-SPP) can outcouple via three pathways to i) photons via scattering of MIM-SPP at the MIM-TJ interfaces, ii) SPPs at the metal-dielectric interfaces (bound-SPPs) by mode coupling through the electrodes, and iii) photons and bound-SPP modes by mode coupling at the MIM-TJ edges.
View Article and Find Full Text PDFPhotodetectors with broadband detection capability are desirable for sensing applications in the coming age of the internet-of-things. Although 2D layered materials (2DMs) have been actively pursued due to their unique optical properties, by far only graphene and black arsenic phosphorus have the wide absorption spectrum that covers most molecular vibrational fingerprints. However, their reported responsivity and response time are falling short of the requirements needed for enabling simultaneous weak-signal and high-speed detections.
View Article and Find Full Text PDFSilicon-based plasmonic waveguides show high confinement well beyond the diffraction limit. Various devices have been demonstrated to outperform their dielectric counterparts at micrometer scales, such as linear modulators, capable of generating high field confinement and improving device efficiency by increasing access to nonlinear processes, limited by ohmic losses. By using hybridized plasmonic waveguide architectures and nonlinear materials, silicon-based plasmonic waveguides can generate strong nonlinear effects over just a few wavelengths.
View Article and Find Full Text PDF