Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma, aging, and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein, we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging, propensity to form spheres, and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2, OCT4, LGR5, TP63 (p63), as well as neural crest marker genes PSIP1 (p75(NTR)), PAX3, SOX9, AP2B1 (AP-2β), and NES, generated a phenotypic footprint of endothelial NCDPs.
View Article and Find Full Text PDFAims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death.
Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens.
Fuchs dystrophy represents the most common form of endothelial dystrophy and is a significant cause of visual impairment. The cause of Fuchs dystrophy is a complicated combination of both genetic and environmental factors. Understanding the underlying causes of the disease can potentially lead to new medical treatments preventing loss of vision.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2013
Purpose: Fuchs endothelial corneal dystrophy (FECD) is an oxidative stress disorder that leads to age-related and gradual loss of corneal endothelial cells resulting in corneal edema and loss of vision. To date, other than surgical intervention, there are no treatment options for patients with FECD. We have shown that in FECD, there is a deficiency in nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defense due to decreased Nrf2 nuclear translocation and activation of antioxidant response element (ARE).
View Article and Find Full Text PDFHuman corneal endothelial cells (HCEnCs) form a monolayer of hexagonal cells whose main function is to maintain corneal clarity by regulating corneal hydration. HCEnCs are derived from neural crest and are arrested in the post-mitotic state. Thus cell loss due to aging or corneal endothelial disorders leads to corneal edema and blindness-the leading indication for corneal transplantation.
View Article and Find Full Text PDFB-Myb is a highly conserved member of the Myb transcription factor family, which plays an essential role in cell cycle progression by regulating the transcription of genes at the G 2/M-phase boundary. The role of B-Myb in other parts of the cell cycle is less well-understood. By employing siRNA-mediated silencing of B-Myb expression, we found that B-Myb is required for efficient entry into S-phase.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2012
Purpose: This study sought to determine factors involved in nuclear factor erythroid 2-related factor 2 (Nrf2) regulation and their response to oxidative stress in Fuchs endothelial corneal dystrophy (FECD) and normal corneal endothelial cells (CECs).
Methods: FECD corneal buttons were obtained from transplantations and normal human corneas from tissue banks. Oxidative stress was induced by tert-butyl hydroperoxide (tBHP).
Purpose: This study compared susceptibility of Fuchs endothelial corneal dystrophy (FECD) and normal corneal endothelial cells (CECs) to oxidative stress, and studied the mechanism of oxidative-stress-induced apoptosis in FECD-affected endothelium.
Methods: For in vitro studies, immortalized normal and FECD human corneal endothelial cell lines (HCECi and FECDi, respectively) were exposed to tert-butyl hydroperoxide (tBHP). Apoptotic cell populations were distinguished using flow cytometry.
The phrase "corneal endothelial dystrophies" embraces a group of bilateral corneal conditions that are characterized by a non-inflammatory and progressive degradation of corneal endothelium. Corneal endothelial cells exhibit a high pump site density and, along with barrier function, are responsible for maintaining the cornea in its natural state of relative dehydration. Gradual loss of endothelial cells leads to an insufficient water outflow, resulting in corneal edema and loss of vision.
View Article and Find Full Text PDFOne of the key regulatory points of translation initiation is recruitment of the 43S preinitation complex to the 5' mRNA cap by the eIF4F complex (eIF4A, eIF4E, and eIF4G). The tumor suppressor protein Pdcd4 has been shown to inhibit cap-dependent translation by interacting tightly with the RNA helicase eIF4A via its tandem MA-3 domains. The NMR studies reported here reveal a fairly extensive and well defined interface between the two MA-3 domains in solution, which appears to be stabilized by a network of interdomain salt bridges and hydrogen bonds, and reveals a unique orientation of the two domains.
View Article and Find Full Text PDFPdcd4 (Programmed Cell Death Protein 4) is a novel eukaryotic tumour suppressor protein, which is involved in the regulation of both transcription and translation (reviewed in Lankat-Buttgereit and Göke 2009). The protein contains two interacting MA-3 domains (MA-3(M) and MA-3(C)), which are linked by a short semi-flexible linker region (Waters et al. 2007; Suzuki et al.
View Article and Find Full Text PDF