The patchoulol synthase (PTS) from Pogostemon cablin is a versatile sesquiterpene synthase and produces more than 20 valuable sesquiterpenes by conversion of the natural substrate farnesyl pyrophosphate (FPP). PTS has the potential to be used as a biocatalyst for the production of valuable sesquiterpenes such as (-)-patchoulol. The objective of the present study is to develop an efficient biotransformation and to characterize the biocatalytic mechanism of the PTS in detail.
View Article and Find Full Text PDFZerumbone is a sesquiterpene ketone with potent anti-cancerogenic activities, produced in several ginger species of the Zingiberaceae familiy. We have investigated the biotechnological production of α-humulene, a precursor of zerumbone. By implementing a heterologous mevalonate pathway in combination with the α-humulene synthase expression, we effectively synthesized α-humulene from glucose in .
View Article and Find Full Text PDFThe α-humulene synthase from Zingiber zerumbet Smith was expressed as a polyhistidine-tagged protein in an E. coli BL21(DE3) strain. Induction time and inductor (isopropyl-β-D-thiogalactopyranoside) concentration were optimized.
View Article and Find Full Text PDFThe patchoulol synthase (PTS) is a multi-product sesquiterpene synthases which is the central enzyme for biosynthesis of patchouli essential oil in the patchouli plant. Sesquiterpene synthases catalyse the formation of various complex carbon backbones difficult to approach by organic synthesis. Here, we report the characterisation of a recombinant patchoulol synthase complementary DNA (cDNA) variant (PTS var.
View Article and Find Full Text PDF