Publications by authors named "Thor L Holtet"

Inhibition of tumor necrosis factor alpha (TNFalpha) is a favorable way of treating several important diseases such as rheumatoid arthritis, Crohn disease, and psoriasis. Therefore, an extensive range of TNFalpha inhibitory proteins, most of them based upon an antibody scaffold, has been developed and used with variable success as therapeutics. We have developed a novel technology platform using C-type lectins as a vehicle for the creation of novel trimeric therapeutic proteins with increased avidity and unique properties as compared with current protein therapeutics.

View Article and Find Full Text PDF

To find new principles for inhibiting serine proteases, we screened phage-displayed random peptide repertoires with urokinase-type plasminogen activator (uPA) as the target. The most frequent of the isolated phage clones contained the disulfide bridge-constrained sequence CSWRGLENHRMC, which we designated upain-1. When expressed recombinantly with a protein fusion partner, upain-1 inhibited the enzymatic activity of uPA competitively with a temperature and pH-dependent K(i), which at 25 degrees C and pH 7.

View Article and Find Full Text PDF

Blood coagulation factor Xa (FXa) and Thrombin are well-known serine proteases often used for processing of recombinant fusion proteins, but because they are purified from bovine blood or other animal sources, there is a risk of pathogenic contaminants in the preparation of the proteases. We report here the characterization of a recombinant serine protease produced in Escherichia coli, which can be used as a specific and efficient alternative to FXa and Thrombin as processing protease. This recombinant protease is derived from human granzyme B (GrB).

View Article and Find Full Text PDF

Granzyme B (GrB) is a member of a family of serine proteases involved in cytotoxic T-lymphocyte-mediated killing of potentially harmful cells, where GrB induces apoptosis by cleavage of a limited number of substrates. To investigate the suitability of GrB as an enzyme for specific fusion protein cleavage, two derivatives of human GrB, one dependent on blood coagulation factor Xa (FXa) cleavage for activation and one engineered to be self-activating, were recombinantly expressed in Escherichia coli. Both derivatives contain a hexa-histidine affinity tag fused to the C-terminus and expressed as inclusion bodies.

View Article and Find Full Text PDF

A library of blood coagulation factor Xa (FXa)-trypsin hybrid proteases was generated and displayed on phage for selection of derivatives with the domain "architecture" of trypsin and the specificity of FXa. Selection based on binding to soybean trypsin inhibitor only provided enzymatically inactive derivatives, due to a specific mutation of serine 195 of the catalytic triad to a glycine, revealing a significant selection pressure for proteolytic inactive derivatives. By including a FXa peptide substrate in the selection mixture, the majority of the clones had retained serine at position 195 and were enzymatically active after selection.

View Article and Find Full Text PDF