The COVID-19 outbreak has thrown the world into an unprecedented crisis. It has posed a challenge to scientists around the globe who are working tirelessly to combat this pandemic. We herein report a set of molecules that may serve as possible inhibitors of the SARS-CoV-2 main protease.
View Article and Find Full Text PDFIntroduction: The protein kinase C (PKC) is a family of multifunctional isoenzymes involved in apoptosis, migration, adhesion, tumorgenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation. It also plays a vital role in the regulation of signal transduction, cell proliferation and differentiation through positive and negative regulation of the cell cycle. In this work, we reviewed the existing PKC inhibitors and several patents linked to PKC inhibitors.
View Article and Find Full Text PDFIntroduction: Protein kinase C (PKC) comprises at least 10 isoforms, pivotal in various cellular differentiation processes and in other specific cellular functions. Catalytic subunits of all PKCs are highly conserved which play a central role in the development of kinase-specific inhibitors for the treatment of a number of diseases and also in the drug resistance and immunological disorders. The authors' previous work of reviewing patents of PKC inhibitors is continued in this report.
View Article and Find Full Text PDFIntroduction: The protein tyrosine phosphatases (PTPases or PTPs) are highly conserved phosphatases that regulate the tyrosine phosphorylation and consequently, the cellular functions. Protein tyrosine phosphorylation is the major post-translational modification to regulate signal transduction in cells. PTPs control diverse processes such as focal adhesion dynamics, cell-cell adhesion, insulin signaling, cytoskeletal functions, synaptogenesis and neurite growth.
View Article and Find Full Text PDF