Unlabelled: In asthma, the airway epithelium is hyperplastic, hypertrophied, and lined with numerous large MUC5AC-containing goblet cells (GC). Furthermore, the normal epithelial architecture is disorganized with numerous, what we here describe as, ectopic goblet cells (eGC) deep within the thickened epithelial layer disconnected from the lumenal surface. mTOR is a highly conserved pathway that regulates cell size and proliferation.
View Article and Find Full Text PDFBackground: Aggresomes are collections of intracellular protein aggregates. In liver cells of patients with alcoholic hepatitis, aggresomes appear histologically as cellular inclusions known as Mallory-Denk (M-D) bodies. The proteasome is a multicatalytic intracellular protease that catalyzes the degradation of both normal (native) and abnormal (misfolded and/or damaged) proteins.
View Article and Find Full Text PDFMacroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria ( mitophagy), and lipid droplets (LDs; lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses ( virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases.
View Article and Find Full Text PDFLipid droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption slows the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation.
View Article and Find Full Text PDFUsing a multiplatform and multiomics approach, we identified metabolites, lipids, proteins, and metabolic pathways that were altered in the liver after chronic ethanol administration. A functional enrichment analysis of the multiomics dataset revealed that rats treated with ethanol experienced an increase in hepatic fatty acyl content, which is consistent with an initial development of steatosis. The nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS) metabolomics data revealed that the chronic ethanol exposure selectively modified toxic substances such as an increase in glucuronidation tyramine and benzoyl; and a depletion in cholesterol-conjugated glucuronides.
View Article and Find Full Text PDFBackground: Specific microbial antigens stimulate production of antibodies indicative of the aberrant immune response in Crohn's disease (CD). We tested for T cell reactivity linkage to B cell responses and now report on the prevalence, functionality, and phenotypic differences of flagellin-specific T cells among CD patients, ulcerative colitis (UC) patients, and control subjects and association with clinical features and flagellin seropositivity within CD patients.
Methods: Sera from non-inflammatory bowel disease control subjects, CD patients, and UC patients were probed for antibody reactivity to gut bacterial recombinant flagellin antigens.
The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.
View Article and Find Full Text PDFProgression of chronic infections to end-stage diseases and poor treatment results are frequently associated with alcohol abuse. Alcohol metabolism suppresses innate and adaptive immunity leading to increased viral load and its spread. In case of hepatotropic infections, viruses accelerate alcohol-induced hepatitis and liver fibrosis, thereby promoting end-stage outcomes, including cirrhosis and hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFAlthough the causes of hepatotoxicity among alcohol-abusing HIV patients are multifactorial, alcohol remains the least explored "second hit" for HIV-related hepatotoxicity. Here, we investigated whether metabolically derived acetaldehyde impairs lysosomes to enhance HIV-induced hepatotoxicity. We exposed Cytochrome P450 2E1 (CYP2E1)-expressing Huh 7.
View Article and Find Full Text PDFPrevious work from our laboratories has identified multiple defects in endocytosis, protein trafficking, and secretion, along with altered Golgi function after alcohol administration. Manifestation of alcohol-associated liver disease (ALD) is associated with an aberrant function of several hepatic proteins, including asialoglycoprotein receptor (ASGP-R), their atypical distribution at the plasma membrane (PM), and secretion of their abnormally glycosylated forms into the bloodstream, but trafficking mechanism is unknown. Here we report that a small GTPase, Rab3D, known to be involved in exocytosis, secretion, and vesicle trafficking, shows ethanol (EtOH)-impaired function, which plays an important role in Golgi disorganization.
View Article and Find Full Text PDFExacerbations of muco-obstructive airway diseases such as COPD and asthma are associated with epithelial changes termed mucous metaplasia (MM). Many molecular pathways triggering MM have been identified; however, the factors that regulate resolution are less well understood. We hypothesized that the autophagy pathway is required for resolution of MM by eliminating excess non-secreted intracellular mucin granules.
View Article and Find Full Text PDFFatty liver, a major health problem worldwide, is the earliest pathological change in the progression of alcohol-associated (AFL) and non-alcoholic fatty liver disease (NAFL). Though the causes of AFL and NAFL differ, both share similar histological and some common pathophysiological characteristics. In this study, we sought to examine mechanisms responsible for lipid dynamics in liver and adipose tissue in the setting of AFL and NAFL in response to 48 h of fasting.
View Article and Find Full Text PDFLipid droplets (LDs) are composed of neutral lipids enclosed in a phospholipid monolayer, which harbors membrane-associated proteins that regulate LD functions. Despite the crucial role of LDs in lipid metabolism, remodeling of LD protein composition in disease contexts, such as steatosis, remains poorly understood. We hypothesized that chronic ethanol consumption, subsequent abstinence from ethanol, or fasting differentially affects the LD membrane proteome content and that these changes influence how LDs interact with other intracellular organelles.
View Article and Find Full Text PDFThis review describes the influence of ethanol consumption on hepatic lipophagy, a selective form of autophagy during which fat-storing organelles known as lipid droplets (LDs) are degraded in lysosomes. During classical autophagy, also known as macroautophagy, all forms of macromolecules and organelles are sequestered in autophagosomes, which, with their cargo, fuse with lysosomes, forming autolysosomes in which the cargo is degraded. It is well established that excessive drinking accelerates intrahepatic lipid biosynthesis, enhances uptake of fatty acids by the liver from the plasma and impairs hepatic secretion of lipoproteins.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2019
We are investigating the changes in hepatic lipid catabolism that contribute to alcohol-induced fatty liver. Following chronic ethanol (EtOH) exposure, abstinence from alcohol resolves steatosis. Here, we investigated the hepatocellular events that lead to this resolution by quantifying specific catabolic parameters that returned to control levels after EtOH was withdrawn.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2019
Fatty liver is the earliest response of the liver to excessive ethanol consumption. Central in the development of alcoholic steatosis is increased mobilization of nonesterified free fatty acids (NEFAs) to the liver from the adipose tissue. In this study, we hypothesized that ethanol-induced increase in ghrelin by impairing insulin secretion, could be responsible for the altered lipid metabolism observed in adipose and liver tissue.
View Article and Find Full Text PDFIn hepatocytes and alcohol-metabolizing cultured cells, Golgi undergoes ethanol (EtOH)-induced disorganization. Perinuclear and organized Golgi is important in liver homeostasis, but how the Golgi remains intact is unknown. Work from our laboratories showed that EtOH-altered cellular function could be reversed after alcohol removal; we wanted to determine whether this recovery would apply to Golgi.
View Article and Find Full Text PDFBackground: Lipid droplets (LDs), the organelles central to alcoholic steatosis, are broken down by lipophagy, a specialized form of autophagy. Here, we hypothesize that ethanol administration retards lipophagy by down-regulating Dynamin 2 (Dyn2), a protein that facilitates lysosome re-formation, contributing to hepatocellular steatosis.
Methods: Primary hepatocytes were isolated from male Wistar rats fed Lieber-DeCarli control or EtOH liquid diets for 6-8 wk.
Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil).
View Article and Find Full Text PDFThis paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair.
View Article and Find Full Text PDFOur data describe autophagic flux in primary rat hepatic stellate cells (rHSCs) treated with pro-fibrotic growth factor, transforming growth factor beta (TGF-β). An autophagy flux experiment determines the rate of synthesis and degradation of the autophagosome marker, LC3-II in the presence and absence of the lysosomal inhibitor bafilomcyin, which blocks LC3-II degradation in lysosomes. The effects of a test agent on LC3-II flux through the autophagic pathway is determined immunochemically by its relative amounts detected in lysates of cells treated with and without bafilomycin.
View Article and Find Full Text PDF