Publications by authors named "Thomazo C"

The nitrogen isotopic composition of sedimentary rocks (δN) can trace redox-dependent biological pathways and early Earth oxygenation. However, there is no substantial change in the sedimentary δN record across the Great Oxidation Event about 2.45 billion years ago (Ga), a prominent redox change.

View Article and Find Full Text PDF

The nitrogen isotopic composition of organic matter is controlled by metabolic activity and redox speciation and has therefore largely been used to uncover the early evolution of life and ocean oxygenation. Specifically, positive δ N values found in well-preserved sedimentary rocks are often interpreted as reflecting the stability of a nitrate pool sustained by water column partial oxygenation. This study adds much-needed data to the sparse Paleoarchean record, providing carbon and nitrogen concentrations and isotopic compositions for more than fifty samples from the 3.

View Article and Find Full Text PDF

The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O]) in the ocean. In turn, [O] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO). Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O].

View Article and Find Full Text PDF

Sedimentary records of superheavy pyrites in Phanerozoic and Proterozoic successions (i.e., extremely positive δ S values together with higher δ S than coeval δ S ) are mostly interpreted as resulting either from secondary postdepositional processes or from multiple redox reactions between sulfate and sulfide in stratified sulfate-poor environments.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Stable isotope signatures of elements related to life such as carbon and nitrogen can be powerful biomarkers that provide key information on the biological origin of organic remains and their paleoenvironments. Marked advances have been achieved in the last decade in our understanding of the coupled evolution of biological carbon and nitrogen cycling and the chemical evolution of the early Earth thanks, in part, to isotopic signatures preserved in fossilized microbial mats and organic matter of marine origin. However, the geologic record of the early continental biosphere, as well as its evolution and biosignatures, is still poorly constrained.

View Article and Find Full Text PDF

After permanent atmospheric oxygenation, anomalous sulfur isotope compositions were lost from sedimentary rocks, demonstrating that atmospheric chemistry ceded its control of Earth's surficial sulfur cycle to weathering. However, mixed signals of anoxia and oxygenation in the sulfur isotope record between 2.5 to 2.

View Article and Find Full Text PDF

While significant efforts have been invested in reconstructing the early evolution of the Earth's atmosphere-ocean-biosphere biogeochemical nitrogen cycle, the potential role of an early continental contribution by a terrestrial, microbial phototrophic biosphere has been largely overlooked. By transposing to the Archean nitrogen fluxes of modern topsoil communities known as biological soil crusts (terrestrial analogs of microbial mats), whose ancestors might have existed as far back as 3.2 Ga ago, we show that they could have impacted the evolution of the nitrogen cycle early on.

View Article and Find Full Text PDF

The Great Oxidation Event (GOE) has been defined as the time interval when sufficient atmospheric oxygen accumulated to prevent the generation and preservation of mass-independent fractionation of sulphur isotopes (MIF-S) in sedimentary rocks. Existing correlations suggest that the GOE was rapid and globally synchronous. Here we apply sulphur isotope analysis of diagenetic sulphides combined with U-Pb and Re-Os geochronology to document the sulphur cycle evolution in Western Australia spanning the GOE.

View Article and Find Full Text PDF

Microbial sulfate reduction (MSR) is thought to have operated very early on Earth and is often invoked to explain the occurrence of sedimentary sulfides in the rock record. Sedimentary sulfides can also form from sulfides produced abiotically during late diagenesis or metamorphism. As both biotic and abiotic processes contribute to the bulk of sedimentary sulfides, tracing back the original microbial signature from the earliest Earth record is challenging.

View Article and Find Full Text PDF

In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.

View Article and Find Full Text PDF

Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA).

View Article and Find Full Text PDF

In the aftermath of the end-Permian mass extinction, Early Triassic sediments record some of the largest Phanerozoic carbon isotopic excursions. Among them, a global Smithian-negative carbonate carbon isotope excursion has been identified, followed by an abrupt increase across the Smithian-Spathian boundary (SSB; ~250.8 Myr ago).

View Article and Find Full Text PDF

Although nitrogen is a key element in organic molecules such as nucleic acids and proteins, the timing of the emergence of its modern biogeochemical cycle is poorly known. Recent studies on the antiquity of the nitrogen cycle and its interaction with free oxygen suggests the establishment of a complete aerobic N biogeochemical cycle with nitrification, denitrification, and nitrogen fixation at about 2.68 Gyr.

View Article and Find Full Text PDF

Microscopic sulfides with low 34S/32S ratios in marine sulfate deposits from the 3490-million-year old Dresser Formation, Australia, have been interpreted as evidence for the presence of early sulfate-reducing organisms on Earth. We show that these microscopic sulfides have a mass-independently fractionated sulfur isotopic anomaly (Delta33S) that differs from that of their host sulfate (barite). These microscopic sulfides could not have been produced by sulfate-reducing microbes, nor by abiologic processes that involve reduction of sulfate.

View Article and Find Full Text PDF