Publications by authors named "Thomaz Fleury Curado"

Objectives: This study aims to evaluate the quantity, types, and trends of surgical procedures used to treat obstructive sleep apnea (OSA) within a diverse national population, utilizing a comprehensive proprietary healthcare database.

Methods: This descriptive observational study analyzed longitudinal data from the Optum Clinformatics® Data Mart databases, covering the period from January 2004 to December 2020. The study included patients aged 18 to 89 years, both male and female, with a confirmed diagnosis of OSA.

View Article and Find Full Text PDF

Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA.

View Article and Find Full Text PDF

Technical note. The lower nasal architecture is dependent on caudal septal integrity. Deviations of the caudal septum can compromise nasal airflow.

View Article and Find Full Text PDF

Study Objectives: The major goal of the study was to determine whether changes in tongue morphology under selective hypoglossal nerve therapy for obstructive sleep apnea were associated with alterations in airway patency during sleep when specific portions of the hypoglossal nerve were stimulated.

Methods: This case series was conducted at the Johns Hopkins Sleep Disorders Center at Johns Hopkins Bayview Medical Center. Twelve patients with apnea implanted with a multichannel targeted hypoglossal nerve-stimulating system underwent midsagittal ultrasound tongue imaging during wakefulness.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway due to the loss of upper airway muscle tone during sleep. OSA is highly prevalent, especially in obesity. There is no pharmacotherapy for OSA.

View Article and Find Full Text PDF

Study Objectives: Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH).

View Article and Find Full Text PDF

Dysfunction and/or reduced activity in the tongue muscles contributes to conditions such as dysphagia, dysarthria, and sleep disordered breathing. Current treatments are often inadequate, and the tongue is a readily accessible target for therapeutic gene delivery. In this regard, gene therapy specifically targeting the tongue motor system offers two general strategies for treating lingual disorders.

View Article and Find Full Text PDF

Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus.

View Article and Find Full Text PDF

Respiratory depression is the main cause of morbidity and mortality associated with opioids. Obesity increases opioid-related mortality, which is mostly related to comorbid obstructive sleep apnea. Naloxone, a μ-opioid receptor blocker, is an effective antidote, but it reverses analgesia.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive sleep-related losses of upper airway patency that occur most frequently during rapid eye movement (REM) sleep. Hypoglossal motoneurons play a key role in regulating upper airway muscle tone and patency during sleep. REM sleep activates GABA and glycine neurons in the ventral medulla (VM) to induce cortical desynchronization and skeletal muscle atonia during REM sleep; however, the role of this brain region in modulating hypoglossal motor activity is unknown.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a highly prevalent disease characterized by recurrent closure of the upper airway during sleep. It has a complex pathophysiology involving four main phenotypes. An abnormal upper airway anatomy is the key factor that predisposes to sleep-related collapse of the pharynx, but it may not be sufficient for OSA development.

View Article and Find Full Text PDF

Invasive procedures were previously developed for measuring pharyngeal collapsibility in rodents during expiration, when declining neuromuscular activity makes the airway unstable. We developed a non-invasive approach for streamlining collapsibility measurements by characterizing responses in physiologic markers of dynamic expiratory airflow obstruction to negative nasal pressure challenges. Anesthetized mice were instrumented to monitor upper airway pressure-flow relationships with head-out plethysmography while nasal pressure was ramped down from ~ +5 to -20 cm HO over several breaths.

View Article and Find Full Text PDF

Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice.

View Article and Find Full Text PDF

Rationale: Leptin treats upper airway obstruction and alveolar hypoventilation in leptin-deficient ob/ob mice. However, obese humans and mice with diet-induced obesity (DIO) are resistant to leptin because of poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep-disordered breathing in obesity.

View Article and Find Full Text PDF

Over the past 30 years, hypoglossal nerve stimulation has moved through a development pathway to become a viable treatment modality for patients with OSA. Initial pilot studies in animals and humans laid the conceptual foundation for this approach, leading to the development of fully implantable stimulating systems for therapeutic purposes. These devices were then shown to be both safe and efficacious in feasibility studies.

View Article and Find Full Text PDF

Obesity leads to sleep-disordered breathing (SDB) manifested by recurrent upper airway obstructions termed obstructive sleep apnea (OSA) and carbon dioxide retention due to hypoventilation. The objective of this work was to characterize breathing during sleep in C57BL6/J mice with diet-induced obesity (DIO). Arterial blood gas was measured in nine obese and nine lean mice during wakefulness.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstruction during sleep. OSA leads to high cardiovascular morbidity and mortality. The pathogenesis of OSA has been linked to a defect in neuromuscular control of the pharynx.

View Article and Find Full Text PDF