Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity.
View Article and Find Full Text PDFRecent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females.
View Article and Find Full Text PDFThe developing central nervous system is highly sensitive to nutrient changes during the perinatal period, emphasising the potential impact of alterations of maternal diet on offspring brain development and behaviour. A growing body of research implicates the gut microbiota in neurodevelopment and behaviour. Maternal overweight and obesity during the perinatal period has been linked to changes in neurodevelopment, plasticity and affective disorders in the offspring, with implications for microbial signals from the maternal gut.
View Article and Find Full Text PDFBackground: Alcohol use disorder (AUD) is commonly associated with distressing psychological symptoms. Pathologic changes associated with AUD have been described in both the gut microbiome and brain, but the mechanisms underlying gut-brain signaling in individuals with AUD are unknown. This study examined associations among the gut microbiome, brain morphometry, and clinical symptoms in treatment-seeking individuals with AUD.
View Article and Find Full Text PDFSocial anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations.
View Article and Find Full Text PDFLifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour.
View Article and Find Full Text PDFChronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor.
View Article and Find Full Text PDFBackground: The gut microbiota has been extensively implicated in health and disease. The functional outputs of the gut microbiota, such as microbial metabolites, are considered particularly important in this regard. Significant associations exist between alterations in the relative abundance of specific microbial taxa and mental health disorders.
View Article and Find Full Text PDFThe microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress.
View Article and Find Full Text PDFSocial anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function.
View Article and Find Full Text PDFBackground And Hypothesis: Intestinal microbiota is intrinsically linked to human health. Evidence suggests that the composition and function of the microbiome differs in those with schizophrenia compared with controls. It is not clear how these alterations functionally impact people with schizophrenia.
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors (SSRIs) are the most popular antidepressant medications used to manage perinatal mood disturbances, yet our understanding of how they affect the microbiome-gut-brain axis of the mother and offspring is limited. The purpose of this study was to determine how peripartum SSRI treatment may prevent the effects of gestational stress on plasticity in the maternal hippocampus, plasticity in the neonatal brain and related changes in gut microbiota. To do this Sprague-Dawley female rats were left untreated or subjected to unpredictable stress during pregnancy.
View Article and Find Full Text PDFThe microbiome-gut-brain axis plays a role in anxiety, the stress response and social development, and is of growing interest in neuropsychiatric conditions. The gut microbiota shows compositional alterations in a variety of psychiatric disorders including depression, generalised anxiety disorder (GAD), autism spectrum disorder (ASD) and schizophrenia but studies investigating the gut microbiome in social anxiety disorder (SAD) are very limited. Using whole-genome shotgun analysis of 49 faecal samples (31 cases and 18 sex- and age-matched controls), we analysed compositional and functional differences in the gut microbiome of patients with SAD in comparison to healthy controls.
View Article and Find Full Text PDFAging is associated with remodelling of immune and central nervous system responses resulting in behavioural impairments including social deficits. Growing evidence suggests that the gut microbiome is also impacted by aging, and we propose that strategies to reshape the aged gut microbiome may ameliorate some age-related effects on host physiology. Thus, we assessed the impact of gut microbiota depletion, using an antibiotic cocktail, on aging and its impact on social behavior and the immune system.
View Article and Find Full Text PDFBackground: Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development.
View Article and Find Full Text PDFNumerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour.
View Article and Find Full Text PDFAging has a significant impact on physiology with implications for central nervous system function coincident with increased vulnerability to stress exposures. A number of stress-sensitive molecular mechanisms are hypothesized to underpin age-related changes in brain function. Recent cumulative evidence also suggests that aging impacts gut microbiota composition.
View Article and Find Full Text PDFMounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes.
View Article and Find Full Text PDFThe impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population.
View Article and Find Full Text PDFIntroduction: A functional reciprocity between the gut microbiome and vagal nerve activity has been suggested, however, human studies addressing this phenomenon are limited.
Methods: Twenty-four-hour cardiac vagal activity (CVA) was assessed from 73 female participants (aged 24.5 ± 4.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder.
View Article and Find Full Text PDFBackground And Aim: Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways.
View Article and Find Full Text PDF