Individuation and organization in complex living multi-level ecosystem occurs as dynamical processes from early ontogeny. The notion of living "holon" displaying dynamic self-assertion and integration is used here to explain the ecosystems dynamic processes. The update of the living holon state according to the continuous change of the dynamic system allows for its viability.
View Article and Find Full Text PDFCell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition.
View Article and Find Full Text PDFTo further investigate the contribution of intercellular adhesion molecule-1 (ICAM-1) to adaptive immune responses, we analysed T-cell development and function in mice lacking full-length ICAM-1 (ICAM-1(tm1Jcgr) ). Compared with wild-type (ICAM-1(WT) ) mice, ICAM-1(tm1Jcgr) mice have impaired thymocyte development. Proportions and numbers of double negative, double positive, mature CD4(+) and CD8(+) thymocytes, as well as of regulatory T (Treg) cells were also significantly decreased.
View Article and Find Full Text PDFDynamic modeling of lymphocyte behavior has primarily been based on populations based differential equations or on cellular agents moving in space and interacting each other. The final steps of this modeling effort are expressed in a code written in a programing language. On account of the complete lack of standardization of the different steps to proceed, we have to deplore poor communication and sharing between experimentalists, theoreticians and programmers.
View Article and Find Full Text PDFIt is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model.
View Article and Find Full Text PDFVaccines are the most effective tools to prevent infectious diseases and to minimize their impact on humans or animals. Despite the successful development of vaccines that are able to elicit potent and protective immune responses, the majority of vaccines have been so far developed empirically and mechanistic events leading to protective immune responses are often poorly understood. This hampers the development of new prophylactic as well as therapeutic vaccines for infectious diseases and cancer.
View Article and Find Full Text PDFNeuropilin 1 (NP1) is a receptor for both semaphorin and vascular endothelial growth factor expressed by subpopulations of neuronal and endothelial cells. In the immune system, NP1 is present on dendritic and regulatory T cells. Here, we show that NP1 is expressed in the murine thymus, starting on day 12.
View Article and Find Full Text PDFWe investigated the causes of the altered functionality of T cells cultured under conditions designed for cell and gene therapy and the strategies to prevent their defects. We first showed that human T cells cultured for 6 days with anti-CD3 +/- anti-CD28 antibodies and interleukin-2 presented a 50% decrease of their proliferative responses to allogeneic or recall antigens. Similarly, day-6 cultured murine T cells completely lost their capacity to reject allogeneic skin grafts and to provoke graft-versus-host disease (GVHD) when infused into irradiated semi-allogeneic mice.
View Article and Find Full Text PDFSCID patients have been successfully treated by administration of ex vivo gene-corrected stem cells. However, despite its proven efficacy, such treatment carries specific risks and difficulties. We hypothesized that some of these drawbacks may be overcome by in situ gene correction of T lymphoid progenitors in the thymus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
The survival of T cells derived from the early waves of thymus colonization by haemopoietic cell precursors was investigated by grafting thymus from B6.Thy1.1 day 14 embryos (E14) (first wave) or E17 or newborn thymus (subsequent waves) into allogeneic athymic BALB/c (Thy1.
View Article and Find Full Text PDFTo investigate the role of primary T cell repertoire selection in the immunopathogenesis of autoimmune diseases, pure thymic epithelium (TE) from nonobese diabetic (NOD) embryos was grafted into non autoimmune prone newborn C57BL/6 athymic mice. The results show that NOD TE selects host T cell repertoires that establish autoimmunity in otherwise nondiabetic animals. Thus, such chimeras regularly show CD4 and CD8 T cell-mediated insulitis and sialitis, in contrast with syngeneic or allogeneic chimeras produced with TE from nonautoimmune strains.
View Article and Find Full Text PDFGrafts of thymic epithelium (TE) rudiments restore T cell development and function in allogeneic athymic mice. These TE chimeras are specifically tolerant to grafts of peripheral tissues (e.g.
View Article and Find Full Text PDFWe have devised a model in which nude mice are T cell reconstituted at birth by subcutaneous grafts of embryonic thymic epithelium (TE) removed from 10 days allogeneic embryos. The TE is colonized by the nude mouse hemopoietic cells which differentiate into T cells. Such T cell-reconstituted nude mice are able to reject third party skin graft and are tolerant to skin of their own haplotype but also the TE H-2 type.
View Article and Find Full Text PDFThe avian embryo has provided an appropriate model to study the ontogeny of the primary lymphoid organs, thymus and bursa of Fabricius. By using the quail-chick marker system the embryonic origin of the highly intricate cell components which form these organs could be traced back to the initial endodermal, mesodermal and ectodermal germ layers. The timing and dynamics of the incoming and outcoming flows of hemopoietic cells which characterize their lymphopoietic activity could be revealed in both quail and chick embryos.
View Article and Find Full Text PDF