Encoded by , the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities.
View Article and Find Full Text PDFHyperactivation of the RAS-RAF-MEK-ERK cascade - a mitogen-activated protein kinase pathway - has a well-known association with oncogenesis of leading tumor entities, including non-small cell lung cancer, colorectal carcinoma, pancreatic ductal adenocarcinoma, and malignant melanoma. Increasing evidence shows that genetic alterations leading to RAS-RAF-MEK-ERK pathway hyperactivation mediate contact- and soluble-dependent crosstalk between tumor, tumor microenvironment (TME) and the immune system resulting in immune escape mechanisms and establishment of a tumor-sustaining environment. Consequently, pharmacological interruption of this pathway not only leads to tumor-cell intrinsic disruptive effects but also modification of the TME and anti-tumor immunomodulation.
View Article and Find Full Text PDFFor the diagnosis of systemic autoimmune rheumatic diseases (SARD), patients are screened for anti-nuclear antibodies (ANA). ANA, as assessed by indirect immunofluorescence (IIF), have a poor specificity. This hampers interpretation of positive results in clinical settings with low pretest probability of SARD.
View Article and Find Full Text PDF