Publications by authors named "Thomas Woolf"

Objectives: To examine cross-sectional and longitudinal associations of individual sleep domains and multidimensional sleep health with current overweight or obesity and 5-year weight change in adults.

Methods: We estimated sleep regularity, quality, timing, onset latency, sleep interruptions, duration, and napping using validated questionnaires. We calculated multidimensional sleep health using a composite score (total number of "good" sleep health indicators) and sleep phenotypes derived from latent class analysis.

View Article and Find Full Text PDF

Background We aim to evaluate the association between meal intervals and weight trajectory among adults from a clinical cohort. Methods and Results This is a multisite prospective cohort study of adults recruited from 3 health systems. Over the 6-month study period, 547 participants downloaded and used a mobile application to record the timing of meals and sleep for at least 1 day.

View Article and Find Full Text PDF

Background: To address the obesity epidemic, there is a need for novel paradigms, including those that address the timing of eating and sleep in relation to circadian rhythms. Electronic health records (EHRs) are an efficient way to identify potentially eligible participants for health research studies. Mobile health (mHealth) apps offer available and convenient data collection of health behaviors, such as timing of eating and sleep.

View Article and Find Full Text PDF

Background: Night eating syndrome (NES) is associated with adverse health outcomes. This study evaluated the relationship between night eating severity, weight, and health behaviors.

Methods: Participants (N = 1017; 77.

View Article and Find Full Text PDF

Background: Collecting data on daily habits across a population of individuals is challenging. Mobile-based circadian ecological momentary assessment (cEMA) is a powerful frame for observing the impact of daily living on long-term health.

Objective: In this paper, we (1) describe the design, testing, and rationale for specifications of a mobile-based cEMA app to collect timing of eating and sleeping data and (2) compare cEMA and survey data collected as part of a 6-month observational cohort study.

View Article and Find Full Text PDF

Timing of eating relative to sleep and endogenous circadian rhythm impacts weight and cardiometabolic health. We used qualitative methods to explore what influences the "when" of eating and sleeping. We conducted 37 one-on-one semi-structured interviews among participants with a body mass index (BMI) ≥ 25 kg/m recruited from three internal medicine clinics affiliated with an urban academic hospital.

View Article and Find Full Text PDF

ABSTRACTNovel approaches to improving disaster response have begun to include the use of big data and information and communication technology (ICT). However, there remains a dearth of literature on the use of these technologies in disasters. We have conducted an integrative literature review on the role of ICT and big data in disasters.

View Article and Find Full Text PDF

Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium.

View Article and Find Full Text PDF

The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity.

View Article and Find Full Text PDF

MDR3 dysfunction is associated with liver diseases. We report here a novel MDR3 activity assay involving in situ biosynthesis in primary hepatocytes of deuterium (d9)-labeled PC and LC-MS/MS determination of transported extracellular PC-d9. Several drugs associated with DILI such as chlorpromazine, imipramine, itraconazole, haloperidol, ketoconazole, sequinavir, clotrimazole, ritonavir, and troglitazone inhibit MDR3 activity.

View Article and Find Full Text PDF

A molecular understanding of conformational change is important for connecting structure and function. Without the ability to sample on the meaningful large-scale conformational changes, the ability to infer biological function and to understand the effect of mutations and changes in environment is not possible. Our Dynamic Importance Sampling method (DIMS), part of the CHARMM simulation package, is a method that enables sampling over ensembles of transition intermediates.

View Article and Find Full Text PDF

Wilson disease (WD) is a monogenic autosomal-recessive disorder of copper accumulation that leads to liver failure and/or neurological deficits. WD is caused by mutations in ATP7B, a transporter that loads Cu(I) onto newly synthesized cupro-enzymes in the trans-Golgi network (TGN) and exports excess copper out of cells by trafficking from the TGN to the plasma membrane. To date, most WD mutations have been shown to disrupt ATP7B activity and/or stability.

View Article and Find Full Text PDF

Recent X-ray structural work on the Drosophila epidermal growth factor receptor (EFGR) has suggested an asymmetric dimer that rationalizes binding affinity measurements that go back decades (Alvarado et al., Cell 2010;142:568-579; Dawson et al., Structure 2007;15:942-954; Lemmon et al.

View Article and Find Full Text PDF

SERCA is a membrane transport protein that has been extensively studied. There are a large number of highly resolved X-ray structures and several hundred mutations that have been characterized functionally. Despite this, the molecular details of the catalytic cycle, a cycle that includes large conformational changes, is not fully understood.

View Article and Find Full Text PDF

Several different mechanical models of double-helical nucleic-acid structures that have been presented in the literature are reviewed here together with a new analysis method that provides a reconciliation between these disparate models. In all cases, terminology and basic results from the theory of Lie groups are used to describe rigid-body motions in a coordinate-free way, and when necessary, coordinates are introduced in a way in which simple equations result. We consider double-helical DNAs and RNAs which, in their unstressed referential state, have backbones that are either straight, slightly precurved, or bent by the action of a protein or other bound molecule.

View Article and Find Full Text PDF

A molecular understanding of how protein function is related to protein structure requires an ability to understand large conformational changes between multiple states. Unfortunately these states are often separated by high free energy barriers and within a complex energy landscape. This makes it very difficult to reliably connect, for example by all-atom molecular dynamics calculations, the states, their energies, and the pathways between them.

View Article and Find Full Text PDF

SERCA is an important model system for understanding the molecular details of conformational change in membrane transport systems. This reflects the large number of solved X-ray structures and the equally large database of mutations that have been assayed. In this computational study, we provide a molecular dynamics description of the conformational changes during the E1P → E2P transitions.

View Article and Find Full Text PDF

MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays.

View Article and Find Full Text PDF

The Symposium 'Frontiers in membrane and membrane protein biophysics: experiments and theory', held this year at the University of California, Irvine (August 19-20), celebrated the 70th Birthday of Stephen H. White by bringing together distinguished experimentalists and theoreticians to discuss the state of the art and future challenges in the field of membrane and membrane protein biophysics. The meeting and this special issue highlight the highly interdisciplinary nature of membrane and membrane protein biophysics, and the tremendous contributions that S.

View Article and Find Full Text PDF

There is an increasing dataset of solved biomolecular structures in more than one conformation and increasing evidence that large-scale conformational change is critical for biomolecular function. In this article, we present our implementation of a dynamic importance sampling (DIMS) algorithm that is directed toward improving our understanding of important intermediate states between experimentally defined starting and ending points. This complements traditional molecular dynamics methods where most of the sampling time is spent in the stable free energy wells defined by these initial and final points.

View Article and Find Full Text PDF

How a biological system responds to a charge shift is a challenging question directly relevant to biological function. Time-resolved fluorescence of a tryptophan residue reflects protein and solvent response to the difference in pi-electron density between the excited and the ground state. In this study we use molecular dynamics to calculate the time-dependent spectral shift (TDSS) in the fluorescence of Trp-43 in GB1 protein.

View Article and Find Full Text PDF

The fusion between two lipid bilayers involves crossing a complicated energy landscape. The limiting barrier in the process appears to be between two closely opposed bilayers and the intermediate state where the outer leaflets are fused. We have performed molecular dynamics simulations to characterize the free energy barrier for the fusion of two liposomes and to examine the molecular details of barrier crossing.

View Article and Find Full Text PDF

Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together.

View Article and Find Full Text PDF

The growing dataset of K(+) channel x-ray structures provides an excellent opportunity to begin a detailed molecular understanding of voltage-dependent gating. These structures, while differing in sequence, represent either a stable open or closed state. However, an understanding of the molecular details of gating will require models for the transitions and experimentally testable predictions for the gating transition.

View Article and Find Full Text PDF