Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.
View Article and Find Full Text PDFIntegration of voltage-gated Ca(2+) channels in a network of protein-interactions is a crucial requirement for proper regulation of channel activity. In this study, we took advantage of the specific properties of the yeast split-ubiquitin system to search for and characterize so far unknown interaction partners of CaV2 Ca(2+) channels. We identified tetraspanin-13 (TSPAN-13) as an interaction partner of the α1 subunit of N-type CaV2.
View Article and Find Full Text PDFRecent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials.
View Article and Find Full Text PDFIn cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative (dn) isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine (BrdU).
View Article and Find Full Text PDFChanges in the density of NMDA (GluN) receptors in the neuronal membrane are critical for plasticity, whereas malfunction of precisely regulated GluN receptor activity may be involved in neurotoxicity. In cultured rat neocortical interneurons, we have studied the regulation of the surface density of GluN1, GluN2A and GluN2B subunits. Application of 5 μMol NMDA for 24 h followed by a washout period of 24 h decreased the response of GluN receptors for at least 2 days.
View Article and Find Full Text PDFObjective: For acute myeloid leukemia (AML), gene therapy may be used to treat patients refractory to conventional chemotherapy. However, availability of vectors sufficiently and specifically transducing this cell type is very limited.
Method: Here we report the selection of capsid-modified adeno-associated viral (AAV) vectors targeting Kasumi-1 AML cells by screening random AAV displayed peptide libraries.