Publications by authors named "Thomas Willers"

This study represents an experimental investigation, complemented with a mathematical model, to decipher the effect of gravity on the spreading dynamics of a water droplet. For the theoretical discussion, an overall energy balance approach is adopted to explain the droplet spreading under both microgravity (μg) and terrestrial gravity condition. Besides explaining the mechanism of the droplet spreading under microgravity condition achieved during the parabolic flight, a technique with a detailed experimental set-up has also been developed for the successful deposition of droplet.

View Article and Find Full Text PDF

Hypothesis: The drop deposition technique can impact contact angle measurements. We hypothesized that the drop pinch-off, during the traditionally used pendant drop technique, significantly alters the static contact angle. The capillary waves and dynamic wetting pressure generated during the pendant drop deposition are the source for forced spreading, which can be circumvented by alternative liquid-needle drop deposition techniques.

View Article and Find Full Text PDF

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states.

View Article and Find Full Text PDF

The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj525mjereoqphaleh6c12e47fqcbcm6u): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once