Publications by authors named "Thomas Whisenant"

Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation.

View Article and Find Full Text PDF

Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons.

View Article and Find Full Text PDF

Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML.

View Article and Find Full Text PDF

Adenosine deaminase acting on RNA1 (ADAR1) preserves genomic integrity by preventing retroviral integration and retrotransposition during stress responses. However, inflammatory-microenvironment-induced ADAR1p110 to p150 splice isoform switching drives cancer stem cell (CSC) generation and therapeutic resistance in 20 malignancies. Previously, predicting and preventing ADAR1p150-mediated malignant RNA editing represented a significant challenge.

View Article and Find Full Text PDF

Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-GlcNAc transferase regulates neuronal activity-driven mitochondrial bioenergetics.

View Article and Find Full Text PDF

(1) Background: Many transporters of the SLC22 family (e.g., OAT1, OAT3, OCT2, URAT1, and OCTN2) are highly expressed in the kidney.

View Article and Find Full Text PDF

Background: Noninvasive biomarkers distinguishing early immune activation before acute rejection (AR) could more objectively inform immunosuppression management in liver transplant recipients (LTRs). We previously reported a genomic profile distinguishing LTR with AR versus stable graft function. This current study includes key phenotypes with other causes of graft dysfunction and uses a novel random forest approach to augment the specificity of predicting and diagnosing AR.

View Article and Find Full Text PDF

Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid leukemia stem cells (LSCs) had not been elucidated. Comparative whole-genome and whole-transcriptome sequencing analyses of FACS-purified pre-LSCs from myeloproliferative neoplasm (MPN) patients reveal APOBEC3C upregulation, an increased C-to-T mutational burden, and hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be recapitulated by lentiviral APOBEC3C overexpression.

View Article and Find Full Text PDF
Article Synopsis
  • Organ transplantation research is lacking comprehensive studies on how various mechanisms contribute to posttransplant immune responses and kidney rejection.
  • Systems biology is an emerging field that combines molecular knowledge and large data sets to better understand disease mechanisms holistically, moving away from a purely reductionist perspective.
  • By using diverse genomic technologies and long-term clinical data, an integrative systems biology approach could lead to new insights and therapeutic strategies for improving organ transplantation outcomes.
View Article and Find Full Text PDF

Irreversible electroporation (IRE) is a nonthermal ablation technique that is used clinically in selected patients with locally advanced pancreatic cancer, but most patients develop recurrent distant metastatic disease. We hypothesize that IRE can induce an vaccination effect by releasing tumor neoantigens in an inflammatory context. Using an immunocompetent mouse model, we demonstrated that IRE alone produced complete regression of subcutaneous tumors in approximately 20% to 30% of mice.

View Article and Find Full Text PDF

Gene expression of BAL cells, which samples the cellular milieu within the lower respiratory tract, has not been well studied in severe asthma. To identify new biomolecular mechanisms underlying severe asthma by an unbiased, detailed interrogation of global gene expression. BAL cell expression was profiled in 154 asthma and control subjects.

View Article and Find Full Text PDF

We determined peripheral blood (PB) and biopsy (Bx) RNA expression signatures in a Brazilian and US cohort of kidney transplant patients. Phenotypes assigned by precise histology were: acute rejection (AR), interstitial fibrosis/tubular atrophy/chronic rejection (CR), excellent functioning transplants (TX), and glomerulonephritis recurrence (GN). Samples were analyzed on microarrays and profiles from each cohort were cross-validated on the other cohort with similar phenotypes.

View Article and Find Full Text PDF

Mutations at position K171 in the kinase activation loop of Inhibitor of κB kinase beta (IKKβ) occur in multiple myeloma, spleen marginal zone lymphoma and mantle cell lymphoma. Previously, we demonstrated that these result in constitutive kinase activation and stimulate Signal Transducer and Activator of Transcription 3 (STAT3). This work also identified K147 as a site of K63-linked regulatory ubiquitination required for activation of signaling pathways.

View Article and Find Full Text PDF

Noninvasive biomarkers are needed to monitor stable patients after kidney transplant (KT), because subclinical acute rejection (subAR), currently detectable only with surveillance biopsies, can lead to chronic rejection and graft loss. We conducted a multicenter study to develop a blood-based molecular biomarker for subAR using peripheral blood paired with surveillance biopsies and strict clinical phenotyping algorithms for discovery and validation. At a predefined threshold, 72% to 75% of KT recipients achieved a negative biomarker test correlating with the absence of subAR (negative predictive value: 78%-88%), while a positive test was obtained in 25% to 28% correlating with the presence of subAR (positive predictive value: 47%-61%).

View Article and Find Full Text PDF

Immunosuppression after solid organ transplantation is a delicate balance of the immune response and is a complex phenomenon with many factors involved. Despite advances in the care of patients receiving organ transplants the adverse effects associated with immunosuppressive agents and the risks of long-term immunosuppression present a series of challenges and the need to weigh the risks and benefits of either over or under-immunosuppression. Ideally, if all transplant recipients could develop donor-specific immunological tolerance, it could drastically improve long-term graft survival without the need for immunosuppressive agents.

View Article and Find Full Text PDF

CD4 T cell activation is a central component of the mammalian adaptive immune response and is underscored by a dramatic change in the gene expression profile in these cells. The changes in gene expression that occur during T cell activation are regulated in multiple ways including post-transcriptionally by complexes of RNA-binding proteins. Recently, our study explored the role of the RNA-binding protein U2AF2 and its interacting proteins in mediating posttranscriptional changes in constitutive and alternative splicing during T cell activation.

View Article and Find Full Text PDF

Background: Early diagnosis of familial transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease-modifying therapies. Endomyocardial biopsies are typically amyloid positive when cardiomyopathy is suspected, but this disease manifestation is generally diagnosed late.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the biological basis of Fibromyalgia (FM) by analyzing gene expression in 70 FM patients compared to 70 healthy controls, aiming to create a diagnostic gene expression signature.
  • - Results revealed that FM patients showed altered expression in 421 genes linked to pain processing and inflammation, with a diagnostic model achieving high sensitivity (95%) and specificity (96%) for FM.
  • - The findings suggest new insights into FM's causes and propose further exploration to validate a blood-based molecular signature for diagnosing FM in larger patient groups.
View Article and Find Full Text PDF

Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2.

View Article and Find Full Text PDF

Intralysosomal cystine crystal accumulation, due to mutations in the CTNS gene, is a hallmark of nephropathic cystinosis, but the role of these crystals in disease pathogenesis remains unclear. We hypothesized that, similar to other host-derived crystalline moieties, cystine crystals can induce IL-1β production through inflammasome activation. Thus, we investigated the proinflammatory effects of cystine crystals in primary human PBMCs.

View Article and Find Full Text PDF

High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources.

View Article and Find Full Text PDF

Specific docking interactions between mitogen-activated protein kinases (MAPKs), their regulators, and their downstream substrates, are crucial for efficient and accurate signal transmission. To identify novel substrates of the c-Jun N-terminal kinase (JNK) family of MAPKs, we searched the human genome for proteins that contained (1), a predicted JNK-docking site (D-site); and (2), a cluster of putative JNK target phosphosites located close to the D-site. Here we describe a novel JNK substrate that emerged from this analysis, the functionally uncharacterized protein smoothelin-like 2 (SMTNL2).

View Article and Find Full Text PDF

Motivation: Progress in systems biology depends on developing scalable informatics tools to predictively model, visualize, and flexibly store information about complex biological systems. Scalability of these tools, as well as their ability to integrate within larger frameworks of evolving tools, is critical to address the multi-scale and size complexity of biological systems.

Results: Using current software technology, such as self-generation of database and object code from UML schemas, facilitates rapid updating of a scalable expert assistance system for modeling biological pathways.

View Article and Find Full Text PDF