Publications by authors named "Thomas Weymuth"

Automated and high-throughput quantum chemical investigations into chemical processes have become feasible in great detail and broad scope. This results in an increase in complexity of the tasks and in the amount of generated data. An efficient and intuitive way for an operator to interact with these data and to steer virtual experiments is required.

View Article and Find Full Text PDF

The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network.

View Article and Find Full Text PDF

Data-driven synthesis planning has seen remarkable successes in recent years by virtue of modern approaches of artificial intelligence that efficiently exploit vast databases with experimental data on chemical reactions. However, this success story is intimately connected to the availability of existing experimental data. It may well occur in retrosynthetic and synthesis design tasks that predictions in individual steps of a reaction cascade are affected by large uncertainties.

View Article and Find Full Text PDF

Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases.

View Article and Find Full Text PDF

Semi-empirical quantum chemical approaches are known to compromise accuracy for the feasibility of calculations on huge molecules. However, the need for ultrafast calculations in interactive quantum mechanical studies, high-throughput virtual screening, and data-driven machine learning has shifted the emphasis toward calculation runtimes recently. This comes with new constraints for the software implementation as many fast calculations would suffer from a large overhead of the manual setup and other procedures that are comparatively fast when studying a single molecular structure, but which become prohibitively slow for high-throughput demands.

View Article and Find Full Text PDF
Article Synopsis
  • Every method to solve the Schrödinger equation for many-particle systems involves approximations, leading to systematic errors that need to be quantified for accuracy in computational chemistry.
  • Traditionally, error assessment has relied on benchmarking data from literature, which may not always be applicable to specific molecular systems, casting doubt on reliability.
  • This communication highlights the limitations of static benchmarking and suggests using a dynamic, system-focused approach to better quantify uncertainty in quantum chemical results.
View Article and Find Full Text PDF

Quantum mechanical methods have been well-established for the elucidation of reaction paths of chemical processes and for the explicit dynamics of molecular systems. While they are usually deployed in routine manual calculations on reactions for which some insights are already available (typically from experiment), new algorithms and continuously increasing capabilities of modern computer hardware allow for exploratory open-ended computational campaigns that are unbiased and therefore enable unexpected discoveries. Highly efficient and even automated procedures facilitate systematic approaches toward the exploration of uncharted territory in molecular transformations and dynamics.

View Article and Find Full Text PDF

The impossibility of experiencing the molecular world with our senses hampers teaching and understanding chemistry because very abstract concepts (such as atoms, chemical bonds, molecular structure, reactivity) are required for this process. Virtual reality, especially when based on explicit physical modeling (potentially in real time), offers a solution to this dilemma. Chemistry teaching can make use of advanced technologies such as virtual-reality frameworks and haptic devices.

View Article and Find Full Text PDF

Raman optical activity spectra of Λ-tris(ethylenediamine)-rhodium(III) {[Rh(en)]} have been calculated at 16 on-, near-, and off-resonant wavelengths between 290 and 800 nm. The resulting spectra are analyzed in detail with a focus on the observed resonance effects. Because several electronically excited states are involved, the spectra are never monosignate, as is often observed in resonance Raman optical activity spectra.

View Article and Find Full Text PDF
Article Synopsis
  • Introducing alkynyl-iron moieties to a carbo[6]helicene results in new organometallic helicenes (2 a,b) with notable chiroptical properties and redox-switching capabilities.
  • The study utilized electronic and vibrational circular dichroism, along with Raman optical activity (ROA) spectroscopy, to explore the neutral and oxidized states of these compounds.
  • Advanced ROA calculations under resonance conditions were employed to understand the complex resonance effects on the ROA spectrum of one specific compound, mono-iron ethynylhelicene 2 a.
View Article and Find Full Text PDF

Semiclassical dispersion corrections developed by Grimme and co-workers have become indispensable in applications of Kohn-Sham density functional theory. A deeper understanding of the underlying parametrization might be crucial for well-founded further improvements of this successful approach. To this end, we present an in-depth assessment of the fit parameters present in semiclassical (D3-type) dispersion corrections by means of a statistically rigorous analysis.

View Article and Find Full Text PDF

We present the WCCR10 data set of 10 ligand dissociation energies of large cationic transition metal complexes for the assessment of approximate exchange-correlation functionals. We analyze nine popular functionals, namely BP86, BP86-D3, B3LYP, B3LYP-D3, B97-D-D2, PBE, TPSS, PBE0, and TPSSh by mutual comparison and by comparison to experimental gas-phase data measured with well-known precision. The comparison of all calculated data reveals a large, system-dependent scattering of results with nonnegligible consequences for computational chemistry studies on transition metal compounds.

View Article and Find Full Text PDF

In this study, we compute and analyze theoretical Raman optical activity spectra of large model β-sheets in order to identify reliable signatures for this important secondary structure element. We first review signatures that have already been proposed to be indicative of β-sheets. From these signatures, we find that only the couplet in the amide I region can be regarded as a truly reliable signature.

View Article and Find Full Text PDF

We present the software package M(O)V(I)P(AC) for calculations of vibrational spectra, namely infrared, Raman, and Raman Optical Activity (ROA) spectra, in a massively parallelized fashion. M(O)V(I)P(AC) unites the latest versions of the programs SNF and AKIRA alongside with a range of helpful add-ons to analyze and interpret the data obtained in the calculations. With its efficient parallelization and meta-program design, M(O)V(I)P(AC) focuses in particular on the calculation of vibrational spectra of very large molecules containing on the order of a hundred atoms.

View Article and Find Full Text PDF

To study the capabilities and limitations of Raman optical activity, (-)-(M)σ-[10]helicene and (-)-(M)σ-[4]helicene serve as scaffold molecules on which new chiral centers are introduced by substitution of hydrogen atoms with other functional groups. These functional groups are deuterium atoms, fluorine atoms, and methyl groups. Multiply deuterated species are compared.

View Article and Find Full Text PDF

β-turns belong to the most important secondary structure elements in proteins. On the basis of density functional calculations, vibrational Raman optical activity signatures of different types of β-turns are established and compared as well as related to other signatures proposed in the literature earlier. Our findings indicate that there are much more characteristic ROA signals of β-turns than have been hitherto suggested.

View Article and Find Full Text PDF

The extended amide III region in vibrational spectra of polypeptides and proteins is particularly sensitive to changes in secondary structure. To investigate this structural sensitivity, we have performed density-functional calculations on the small model compound N-acetyl-l-alanine-N-methylamide, which are analyzed using the recently developed analysis in terms of localized modes [J. Chem.

View Article and Find Full Text PDF