Publications by authors named "Thomas Weston"

Complex genetic and dietary cues contribute to the development of obesity, but how these are integrated on a molecular level is incompletely understood. Here, we show that PPARγ supports hypertrophic expansion of adipose tissue via transcriptional control of LPCAT3, a membrane-bound O-acyltransferase that enriches diet-derived omega-6 ( -6) polyunsaturated fatty acids (PUFAs) in the phospholipidome. In high-fat diet-fed mice, lowering membrane -6 PUFA levels by adipocyte-specific knockout ( ) or by dietary lipid manipulation leads to dysfunctional triglyceride (TG) storage, ectopic fat deposition and insulin resistance.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1-the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen-is present in mammals but in not chickens or other lower vertebrates.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how Aster-A, a cholesterol transporter, affects membrane cholesterol levels in T cells and their immune function.
  • Aster-A is recruited to the plasma membrane during T cell activation, facilitating the removal of excess cholesterol, which is crucial for proper T cell receptor signaling and function.
  • Without Aster-A, T cells accumulate excess cholesterol, leading to enhanced immune responses and changes in nutrient absorption, contributing to resistance against obesity.
View Article and Find Full Text PDF

Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes.

View Article and Find Full Text PDF

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing.

View Article and Find Full Text PDF
Article Synopsis
  • Reduced levels of lipoprotein lipase (LPL) in capillaries are suspected to be the cause of hypertriglyceridemia in Apoa5-/- mice, as evidenced by lower LPL staining in heart and brown adipose tissue capillaries.
  • The study found that Apoa5-/- mice had decreased binding of LPL antibodies in these capillaries and lower LPL levels in their postheparin plasma, indicating a disruption in LPL activity.
  • Treatment with an ANGPTL3/8-specific antibody and APOA5 corrected triglyceride levels and LPL levels in these mice, revealing the role of APOA5 in regulating LPL activity and plasma triglyceride metabolism.
View Article and Find Full Text PDF
Article Synopsis
  • Cholesterol absorption in the intestine is influenced by Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe, but how cholesterol moves after NPC1L1 is not well understood.
  • Aster-B and Aster-C proteins are essential for cholesterol transport in enterocytes, connecting NPC1L1 at the cell membrane and ACAT2 in the endoplasmic reticulum.
  • Mice missing Aster proteins have reduced cholesterol absorption and are less likely to develop high cholesterol from their diet, indicating that the Aster pathway is a potential target for treating cholesterol-related issues.
View Article and Find Full Text PDF

Lipoprotein lipase (LPL) is secreted into the interstitial spaces by parenchymal cells and then transported into capillaries by GPIHBP1. LPL carries out the lipolytic processing of triglyceride (TG)-rich lipoproteins (TRLs), but the tissue-specific regulation of LPL is incompletely understood. Plasma levels of TG hydrolase activity after heparin injection are often used to draw inferences about intravascular LPL levels, but the validity of these inferences is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in accessible plasma membrane cholesterol are linked to the Aster family's role in regulating cholesterol synthesis and metabolism in cell models, but their impact on living organisms was previously unclear.
  • The study identifies two key situations in the liver—fasting and reverse cholesterol transport—where accessible PM cholesterol is generated and the Aster pathway is activated, highlighting the importance of these mechanisms.
  • Aster-dependent cholesterol transport during fasting enhances cholesterol movement in the body, and loss of Asters leads to increased plasma cholesterol and accumulation in peripheral tissues, affecting overall lipid balance.
View Article and Find Full Text PDF
Article Synopsis
  • Multilocular adipocytes are special fat cells found in certain mammals that help burn energy, but scientists didn't know why they looked this way.
  • The study discovered that a protein called CLSTN3β helps keep these fat cells from getting too big, which is important for energy use.
  • Mice without this protein had weird-looking fat cells and struggled to stay warm, while those with more CLSTN3β had better ways to use fat for energy.
View Article and Find Full Text PDF

The mutant nuclear lamin protein (progerin) produced in Hutchinson-Gilford progeria syndrome (HGPS) results in loss of arterial smooth muscle cells (SMCs), but the mechanism has been unclear. We found that progerin induces repetitive nuclear membrane (NM) ruptures, DNA damage, and cell death in cultured SMCs. Reducing lamin B1 expression and exposing cells to mechanical stress - to mirror conditions in the aorta - triggered more frequent NM ruptures.

View Article and Find Full Text PDF

Nucleic acid therapeutics (NATs) have proven useful in promoting the degradation of specific transcripts, modifying gene expression, and regulating mRNA splicing. In each situation, efficient delivery of nucleic acids to cells, tissues and intracellular compartments is crucial-both for optimizing efficacy and reducing side effects. Despite successes in NATs, our understanding of their cellular uptake and distribution in tissues is limited.

View Article and Find Full Text PDF

TH17 cell subpopulations have been defined that contribute to inflammation and homeostasis, yet the characteristics of TH17 cells that contribute to host defense against infection are not clear. To elucidate the antimicrobial machinery of the TH17 subset, we studied the response to Cutibacterium acnes, a skin commensal that is resistant to IL-26, the only known TH17-secreted protein with direct antimicrobial activity. We generated C.

View Article and Find Full Text PDF

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr).

View Article and Find Full Text PDF

Cholesterol-laden macrophage foam cells are a hallmark of atherosclerosis. For that reason, cholesterol metabolism in macrophages has attracted considerable scrutiny, particularly the mechanisms by which macrophages unload surplus cholesterol (a process referred to as "cholesterol efflux"). Many studies of cholesterol efflux in macrophages have focused on the role of ABC transporters in moving cholesterol onto high-density lipoproteins (HDLs), but other mechanisms for cholesterol efflux likely exist.

View Article and Find Full Text PDF

Deficiencies in either lamin B1 or lamin B2 cause both defective migration of cortical neurons in the developing brain and reduced neuronal survival. The neuronal migration abnormality is explained by a weakened nuclear lamina that interferes with nucleokinesis, a nuclear translocation process required for neuronal migration. In contrast, the explanation for impaired neuronal survival is poorly understood.

View Article and Find Full Text PDF

Cultured mouse peritoneal macrophages release large numbers of ~30-nm cholesterol-rich particles. Here, we show that those particles represent fragments of the plasma membrane that are pulled away and left behind during the projection and retraction of filopodia and lamellipodia. Consistent with this finding, the particles are enriched in proteins found in focal adhesions, which attach macrophages to the substrate.

View Article and Find Full Text PDF

Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis.

View Article and Find Full Text PDF

GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for the generation of lipid nutrients for adjacent parenchymal cells.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome is a disorder of premature aging in children caused by de novo mutations in that lead to the synthesis of an internally truncated form of prelamin A (commonly called progerin). The production of progerin causes multiple disease phenotypes, including an unusual vascular phenotype characterized by the loss of smooth muscle cells in the arterial media and fibrosis of the adventitia. We show that progerin expression, combined with mechanical stress, promotes smooth muscle cell death.

View Article and Find Full Text PDF

The nuclear lamina, an intermediate filament meshwork lining the inner nuclear membrane, is formed by the nuclear lamins (lamins A, C, B1, and B2). Defects or deficiencies in individual nuclear lamin proteins have been reported to elicit nuclear blebs (protrusions or outpouchings of the nuclear envelope) and increase susceptibility for nuclear membrane ruptures. It is unclear, however, how a complete absence of nuclear lamins would affect nuclear envelope morphology and nuclear membrane integrity (i.

View Article and Find Full Text PDF

Heterogeneity in the metabolic properties of adipocytes in white adipose tissue has been well documented. We sought to investigate metabolic heterogeneity in adipocytes of brown adipose tissue (BAT), focusing on heterogeneity in nutrient uptake. To explore the possibility of metabolic heterogeneity in brown adipocytes, we used nanoscale secondary ion mass spectrometry (NanoSIMS) to quantify uptake of lipids in adipocytes interscapular BAT and perivascular adipose tissue (PVAT) after an intravenous injection of triglyceride-rich lipoproteins (TRLs) containing [H]triglycerides (H-TRLs).

View Article and Find Full Text PDF

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane.

View Article and Find Full Text PDF

Macrophages are generally assumed to unload surplus cholesterol through direct interactions between ABC transporters on the plasma membrane and HDLs, but they have also been reported to release cholesterol-containing particles. How macrophage-derived particles are formed and released has not been clear. To understand the genesis of macrophage-derived particles, we imaged mouse macrophages by EM and nanoscale secondary ion mass spectrometry (nanoSIMS).

View Article and Find Full Text PDF

The processing of triglyceride-rich lipoproteins (TRLs) in capillaries provides lipids for vital tissues, but our understanding of TRL metabolism is limited, in part because TRL processing and lipid movement have never been visualized. To investigate the movement of TRL-derived lipids in the heart, mice were given an injection of [H]triglyceride-enriched TRLs, and the movement of H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid.

View Article and Find Full Text PDF